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ABSTRACT 

 

DEVELOPMENT OF AN ENHANCED SAMPLING WORKFLOW TO ACCELERATE 

MOLECULAR DOCKING WITH SPARSE BIOPHYSICAL INFORMATION 

 

 Rapid docking of flexible biological macromolecules remains a significant open 

challenge in protein structure determination. While rigid docking is relatively simple with 

toolkits such as TagDock, a key obstacle to rapid flexible docking is the complexity and 

roughness of the free energy surface associated with protein conformational motion (often 

termed the many-minima problem), meaning conventional molecular dynamics methods do not 

effectively sample protein conformations near the interaction complex in accessible timescales. 

Methods such as metadynamics and replica exchange molecular dynamics exist to ameliorate 

this obstacle, yet these methods use nonphysical biases or random swaps to enhance sampling. In 

contrast, high temperature molecular dynamics simulations using simulated annealing offer rapid 

sampling of a continuous trajectory, biased only by an imposed external temperature. Herein, 

work is performed to extend the rigid docking toolkit TagDock by implementing a simulated 

annealing workflow to sample protein conformational motion, extract relevant simulation 

frames, and perform TagDock analysis, yielding decoy structures as much as 39% closer to the 

target complex. 

 

Keywords: computational chemistry; protein structure; enhanced sampling; molecular dynamics; 

flexible docking; method development 
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1. Introduction 

Current research in biochemistry seeks to understand human physiology by identifying and 

studying chemical pathways in the body. These pathways carry out biological processes such as 

signal transduction, gene expression, and enzyme inhibition. It is well established that problems 

arise when dysfunction occurs within such fundamental processes.1–4 For example, errors in gene 

expression and cell regulation have been linked to many different cancers.5–7 

Of course, most of these chemical pathways are mediated, regulated, or activated by 

proteins, implying that it is necessary to understand protein function to fully grasp biology. 

Anfinsen’s classic ribonuclease reduction/oxidation experiment8 is an early example of protein 

research, and it indicates a correlation between proteins’ structures and their functions. In fact, 

Anfinsen identifies the comparative importance of distinct disulfide bonds, and he suggests the 

existence of “active centers” (active sites) within the ribonuclease. Newer work has cemented and 

expanded understanding of the protein structure-function relationship to the extent that it is 

considered a fundamental principle of molecular biology.9–11 

1.1 Rational Drug Design and Protein Structure 

It logically follows from the previous paragraph that understanding protein structure is key 

to understanding the biological pathways affecting human health. This knowledge is of particular 

interest to researchers working in drug discovery because detailed protein structures enable 

knowledge-based drug design.12 One example of this strategy is found in the design of protease 

inhibitors for SARS-CoV-2 in 2021.13 Researchers used protein structures of the main SARS-

CoV-2 protease to focus and optimize a screening search, resulting in a 54-fold potency 

improvement over a parent compound originally identified by high throughput screening. It is 

notable that conventional screening methods had been unable to provide significant optimization 

for the drug lead. Instead, rational, structure-based design helped to identify the necessary 
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modifications to the inhibitor. 

1.1.1 Instrumental and Algorithmic Sources for Protein Structures 

The authors of that modeling study utilized protein structures from the Research 

Collaboratory for Structural Bioinformatics’ (RCSB) Protein Data Bank (PDB), available online 

at rcsb.org.14 The PDB is a key repository for solved and proposed protein structures. As of 

December 2023, the PDB contained more than 210,000 experimental models and 1,070,000 

computed structure molecules. Of the computed models, the vast majority were proposed by the 

AlphaFold2 (AF2)15 or RoseTTA fold (RF)16 algorithms. These algorithms utilize machine 

learning (ML) methods to propose protein structures, as opposed to classical physics (e.g. 

molecular dynamics) or quantum mechanics (e.g. electronic structure) approaches to propose 

protein models. Accordingly, attempts to validate ML algorithms have become a major recent 

theme in structural biochemistry.17–21 

These validation studies generally support the accuracy of ML-proposed structures for 

protein monomers. However, AF2 structures tend to be significantly less accurate for oligomeric 

protein complexes than for monomers,17,19 indicating the continued need for methods to accurately 

predict protein quaternary structure. Two preeminent instrumental methods exist for determining 

that structure: x-ray crystallography22,23 and NMR spectroscopy.24–26 While modern advances in 

crystallization,27–30 crystallography,31–33 and structure-solving computational software34–36 have 

improved the state of the art for instrumental structure determination, crystallographic methods are 

still time-consuming and expensive. Further, many protein complexes are transient and do not 

crystallize easily. This hinders progress and underscores the need for novel approaches.23,37,38 

Likewise, improvements in NMR methodology and instrumentation provide access to some large 

proteins and protein complexes, yet complexes that are disordered, flexible, or very large typically 
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remain inaccessible without the addition of complementary techniques.26 

1.1.2 Integrative Sources for Protein Structures 

Hybrid methods that integrate biochemical or instrumental information with high-

performance computing (HPC) offer promising alternatives to fully-experimental methods. For 

example, RosettaDock39 uses a Monte Carlo-based search algorithm to identify likely protein-

protein interfaces and then optimize the backbones and side chains of the interacting monomers. 

The authors use a free energy scoring function to discriminate between reasonable and unfavorable 

docking poses. A recent version of the algorithm40 performs admirably (77% success rate) for 

rigid-docking proteins, though it struggles with proteins that dock flexibly (31% success rate). In 

comparison, the HADDOCK toolkit41 uses biophysical information like titrated NMR perturbation 

data to dock proteins. A newer revision of HADDOCK42 performs very well (100% success rate) 

for easy cases, but, like RosettaDock, it struggles with flexible cases (60% success rate). It is 

important to note the benchmark sizes used here: RosettaDock utilized a benchmark with 13 easy 

cases and 32 flexible cases while HADDOCK used 14 easy and 5 flexible cases. The reduced size 

of the HADDOCK flexible benchmark means the 60% success rate must be accepted with caution. 

It is possible that the true success rate of the toolkit could be much lower if the toolkit were 

evaluated against a larger benchmark. 

One factor contributing to these toolkits’ success with rigid complexes is an energy-based 

scoring function. In each case, the authors use a model of intermolecular interaction energies to 

rank decoys. While RosettaDock attempts to model the free energy of binding using realistic all-

atom force calculations, the authors do include several approximations, citing concerns about 

computational complexity. Likewise, HADDOCK calculates the average interaction energy 

between the components by summing energy contributions from electronic effects, van der Waals 
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interactions, and an attractive term that biases the simulation towards decoys that accurately model 

experimental data.  

A key drawback of this type of energy-based scoring function is high computational 

complexity. Smith et al. reduced this complexity with TagDock,37 which makes use of a distance-

based method to rank decoys solely by their agreement with experimental data. This simplified 

approach enumerates the search space very quickly. In a benchmarking trial using the CDB3 

homodimer, TagDock produced an intermediate-resolution decoy over 125 times faster than 

HADDOCK 2.1 and more than 220 times faster than RosettaDock 3.5. While TagDock’s 

intermediate-resolution structures require further optimization, it is notable that the TagDock 

decoys were about 2Å closer to the CDB3 crystal structure than those produced by HADDOCK 

2.1, demonstrating the toolkit’s potential for accuracy. 

1.2 Flexible Docking and Enhanced Sampling 

TagDock is highly effective for complexes that interact via rigid docking, but, like the 

others, it struggles with flexible targets. When understood in context, these challenges highlight 

the continued need for improvements in the state of the art – protein-protein docking is considered 

“easy” for targets that have excellent templates and maintain rigidity during interactions, but 

toolkit performance is greatly reduced for flexible targets or those with no strong templates. This 

continues to be a trend across the discipline.43 Figure 1-1 demonstrates the trend in more detail: it 

summarizes a recent round of the CAPRI community docking challenge,44 and it reports submitted 

model quality by research group.43 While 44 of 52 groups reported at least one high quality 

structure for complexes in the “easy” category, only 22 of 52 groups reported a high quality 

structure among the “difficult” targets. Further, the average number of acceptable-or-better 

structures is notably lower for “difficult” targets (20% of submitted models were of acceptable 
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quality or better) than for “easy” targets (75% of submitted models were of acceptable quality or 

better). This discrepancy between “easy” and “difficult” targets indicates a knowledge gap in the 

study of flexible protein interactions and demonstrates the need for tools to improve accuracy in 

difficult cases. 

1.2.1 Modeling Protein Flexibility During Docking 

Because of the recent explosion in proposed computational models and improvements in 

Figure 1-1: Competitive performance of docking approaches in CAPRI44 round 46. Each column 

on the horizontal axis represents attempts by competing research groups to dock easy (left) or 

difficult (right) protein complexes. Groups attempted to dock complexes in each category and their 

scores are reported on the vertical axis, ranked by total structure quality. High quality structures 

are stacked on bottom in blue, medium quality in the middle in green, and acceptable quality on 

top in orange. Structures of unacceptable quality are omitted from the chart. Easy cases encompass 

rigid complexes with high quality template while difficult cases either lack monomer templates or 

undergo significant backbone rearrangement upon interaction. The reduced number of acceptable 

or better structures and decreased average score in the difficult category indicates a gap in current 

modeling practices. Adapted from ref. 43.  
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instrumental techniques, it seems clear that finding or creating excellent templates for molecular 

docking will soon become trivial. However, no comparable solution exists to rapidly model protein 

flexibility during docking. One promising choice is to extend TagDock to work effectively in cases 

such as those. The resulting intermediate models for flexible proteins can then be used as starting 

structures for slower, more accurate atomistic algorithms. One established approach to model this 

flexibility is molecular dynamics software.45,46 Molecular dynamics (MD) uses classical force 

calculations to model a macromolecule or chemical system. In comparison to quantum mechanical 

electronic structure calculations, MD trades accuracy for computational efficiency; MD can model 

much larger systems than electronic structure methods, and it can model them over longer periods 

of time. 

1.2.2 Enhanced Sampling  

While these tradeoffs enable some rapid modeling of macromolecules, an in-depth 

understanding of protein flexibility during docking interactions is severely limited by the rarity 

and relative complexity of conformational transitions inherent in molecular docking. Because of 

the high energy barriers to coordinated motion, conventional MD simulations repeatedly sample 

the same “conformational space,” rarely simulating novel structures.47,48 Likewise, this highly 

coordinated nature exacerbates the kinetic effect of those free energy barriers, meaning that 

domain movements and other long-range conformational shifts typically occur in microseconds to 

milliseconds, as highlighted in Figure 1-2. This presents a significant challenge for MD 

simulations because of the sheer number of calculations necessary to model proteins.49,50 Recent 

improvements in MD-specific hardware are helping to alleviate this challenge,51 yet it is clear that 

algorithmic improvements to optimize sampling are necessary to enable modeling of protein 

docking using MD. 
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While a detailed review of these enhanced sampling methods is outside of the scope of this 

thesis, references 43 and 52 are excellent sources that review the topic extensively. It is important 

to note that reference 52 implies the reviewed methods are primarily for protein folding. However, 

sampling methods effective for protein folding may also be effective for modeling protein 

flexibility, as folding and flexibility are both special cases of protein dynamics.  

Two modern themes among enhanced sampling protocols are Monte Carlo algorithmic 

modifications53 and non-physical external biases.54 Simulations utilizing these methods trade 

aspects of physical realism for algorithmic enhancement. However, this tradeoff can be risky: 

Figure 1-2: Illustration of the energy barriers to protein conformational shifts and a comparison 

of protein modeling time resolutions. A) A hypothetical one-dimensional protein free energy 

surface plotted against its spatial conformation. A coordinated transition from a local minimum in 

region α to the global minimum in region β is analogous to a large-scale domain motion, like the 

motion of flexible protein docking. In vivo, such a transition typically requires 10-6-10-3 seconds. 

B) Comparison of time resolutions of protein motions (top) against the time scales simulated by 

molecular dynamics (MD). MD simulations excel at modeling local protein flexibility including 

methyl rotations and loop motions, but many larger domain motions are beyond the capabilities of 

conventional molecular dynamics, underscoring the need for enhanced simulation techniques. 

Adapted from reference 50. 
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simulations that deviate too broadly from natural physical processes risk generating protein 

conformations that do not have physiological relevance. 

For example, replica exchange molecular dynamics (REMD),55 sometimes called parallel 

tempering,56 simulates a set of replicas at different states (traditionally, different temperatures - 

though some variations exchange other functions like the Hamiltonian, e.g.57,58). The algorithm 

swaps replicas between the different states randomly according to a Metropolis criterion, allowing 

each to access a wide swath of the conformational landscape while preserving a canonical 

distribution at each temperature. The approach is commonly used across protein folding and 

biomolecular dynamics studies,59 and it is typically effective for proteins that spontaneously fold. 

One significant challenge for REMD schemes, however, is their tendency to sample proportionally 

to the probability of finding a protein in a given state at a given temperature. Because proteins 

denature as temperature increases, the probability of finding a protein in an unfolded conformation, 

p(unfolded), is proportional to T as described in eqn. (1).52 

𝑝(𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑) ∝ 𝑒
1

𝑘𝑏𝑇 (1) 

Simulated annealing faces a similar challenge, meaning simulation temperature must be carefully 

controlled to avoid selecting denatured protein states. On the other hand, an advantage of simulated 

annealing is that the trajectory is simulated under continuous conditions instead of a series of 

discrete simulations, meaning the effects of changes in simulation parameters can be closely 

monitored and reproduced as needed. 

In comparison, metadynamics60 performs on-the-fly modifications to the free energy 

surface of the molecule to achieve motion along target collective variables (CVs). This 

modification takes the form of a Gaussian penalty, artificially increasing the free energy of a given 

conformation61,62 and disfavoring commonly visited states. One advantage of the method is its 
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efficacy – by design, commonly visited states are disfavored, meaning simulations rapidly explore 

novel conformational space. However, rapid exploration does not necessarily correlate to effective 

sampling, as the bias potential imposed by the method can favor high energy states.63 Further, 

selection of suboptimal CVs can result in ineffective sampling. As a result, it is beneficial to 

develop a different method that can achieve similar rapid exploration while avoiding many of these 

pitfalls. 

1.3 Simulation Monitoring 

It is useful to maintain some form of collective variable (CV) to monitor the state of the 

simulation. The simplest approach is to utilize the root-mean-square distance (RMSD) between 

some initial structure and the simulation trajectory.64 While this enables rapid evaluation of the 

current state of the system (e.g. by monitoring the change from the beginning of the simulation as 

a method to evaluate the extent of conformational motion), the applicability of the approach is 

severely limited by its nature, relying on an isotropic function of distance, rather than a true 

evaluation of collective motion along any spatial or abstract axis. In comparison, it is often 

valuable to have in-depth motion information along such an axis, to facilitate data compression or 

anisotropic directory evaluation. One popular method to develop effective CVs is by using 

principal components analysis (PCA).65–67 PCA uses statistical correlations between atoms to 

develop a set of CVs where motion along each principal component (PC) is a correlated set of 

atomic motions in three dimensions. Because each PC is an eigenvalue of the variance-covariance 

matrix of a trajectory, any protein motion may be constructed using a linear combination of PCs 

from a sufficiently large initial simulation. This property is especially valuable when evaluating 

conformational motion, as it is possible to select frames that contain motion along some collection 

of PCs, even when a target structure is unknown. 
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1.4 Project Goals: Development of an Enhanced Sampling Method to Accelerate 

Flexible Molecular Docking 

Here, work has been performed to enhance conformational sampling in molecular docking 

simulations. The rigid docking toolkit TagDock was used as a starting point, and simulated 

annealing molecular dynamics was used to encourage conformational motion. Simulation 

parameters were optimized to improve efficacy, and principal components analysis was 

implemented to monitor conformational motion. Finally, the PCs were used to develop a novel 

metric for predicting conformational motion towards the bound complex of a structure, and the 

metric was utilized in an enhanced sampling simulation as a proof of concept to predict favorable 

simulation frames in protein 1F6M,68,69 showing promise for a future method that might rapidly 

and automatically predict flexible protein complexes when given only sparse experimental data. 
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2. Methods and Workflow Development 

To solve the problems with enhanced sampling outlined in Chapter 1, a novel sampling 

workflow was developed and benchmarked to determine protein quaternary structure when some 

sparse biophysical data is known a priori. The details of this computational method development 

project follow. 

2.1 TagDock and Definition of Problem 

As discussed previously, the problem of docking flexible proteins in silico continues to be 

an important open question in computational biochemistry. Hardware improvements help to 

accelerate simulations, but because biomolecules have many degrees of freedom, conventional 

algorithms are prohibitively slow. The TagDock toolkit37 ameliorates this challenge by using a 

small set of a priori biophysical information (6-12 distances or distance distributions) to limit its 

scope. Instead of treating the protein as a set of N interacting atoms with 3N degrees of freedom, 

TagDock reduces the problem to a rigid-body orientation problem, which it solves by randomly 

enumerating possible orientations. Models are ranked by their respective agreement with the a 

priori distances, and top models are refined and reported to the user. 

Because TagDock treats proteins as fully rigid bodies, the toolkit cannot effectively 

replicate flexible protein docking without some modification. Extending the tool, then, 

encompasses four key challenges: 

• Sourcing component structures and a priori distances 

• Sampling conformational space 

• Identifying unique conformations 

• Performing protein docking and optimizing native-like structures 

Further, the many changes in hardware, software, and protein structure availability since 
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the tool was released in 2013 meant it was necessary to develop a modern structure benchmark. 

These were addressed in the order outlined above. Initial investigation used the toolkit’s original 

functionality before slowly expanding the proposed method to encompass solutions to each 

challenge in turn. 

2.2 Sourcing Component Structures and a priori Distances 

TagDock requires all-atom three-dimensional coordinate files for each input component in 

PDB 3.30 data format.70 Crystal structures or computed structure models of many proteins are 

available in this format from the RCSB PDB (PDB) at rcsb.org,14,71 though in some situations it 

may be advantageous for a group to collect this data independently. Since the major goal of this 

study was to extend the existing toolkit, the original reference was mirrored by sourcing crystal 

structures from the ZDock benchmark.72 While Smith et al.37 used benchmark 4.0,73 structures for 

this study were sourced from the updated benchmark 5.5.74 Benchmark 5.5 is significantly 

expanded from the previous version, and 123 of 261 complexes are maintained between the two 

databases. These 123 retained sets of structures were the complete source reference set used in this 

study unless explicitly noted, and they are individually listed in Appendix A. Utilizing the same 

resource as the original enabled direct comparison between the results of this study and the results 

of the TagDock paper, allowing quick discrimination between effective and ineffective methods. 

As with coordinate files, TagDock requires a set of distances or distance distributions to 

perform rigid docking. In practice, these could be derived from existing literature, though the 

toolkit advertises itself primarily to groups that collect this data experimentally. Once again, since 

the goal of the study was to extend TagDock, distances used in the study were identical to the ones 

the authors used in the original paper. These restraint sets were obtained from the supporting 

information of the original publication,37 where they were initially determined by heuristically 
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analyzing PDB entries for each benchmark complex in silico. 

2.3 Replicating the TagDock Publication 

Next, a replication study was performed to confirm and assess TagDock’s fitness for 

docking protein complexes and to obtain some benchmark values to reference in further study. 

TagDock version 0.73 was instantiated on a high-performance computing cluster running Linux 

CentOS 6.10 and the job manager OpenPBS. Docking simulations were performed using the 

ZDock “unbound” structures, each enumerating 500,000 initial decoys and refining the best 100. 

Structures were refined according to the steps suggested in the TagDock user manual, available 

with the release version of the toolkit. This refinement first performed 100,000 low-resolution 

perturbations of up to 3.0 Å or 15° with a short circuit condition if no score improvement greater 

than 0.5 was realized within 20,000 steps, followed by 50,000 perturbations of 1.5 Å or 5°, short 

circuiting after 10,000 steps at a threshold of 0.1. Finally, 10,000 perturbations of 1.0 Å and 1° 

were performed, short circuiting after 2000 steps with no improvement. 

The best-scoring decoy from each simulation was then compared to the bound structure 

from the PDB. For each complex, the best TagDock decoy and its corresponding undocked 

partners were loaded into UCSF Chimera 1.17,75 and the molecule’s accepted PDB structure was 

fetched electronically using the `open pdbID:` command. Solvent and ligand molecules were 

deleted to isolate the macromolecules, and each component was superimposed upon the PDB 

reference structure using the `mmaker` command. This method was used in an attempt to control 

for the effects of conformational change on the reported structure quality. Next, the root-mean-

square deviation (RMSD) between each strand of the decoy and its superimposed, undocked 

component was calculated. The two resulting component RMSDs were summed, yielding a 

combined RMSD score for the complex. Scheme 2-1 illustrates this process. Once RMSDs were 
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obtained for each complex in the benchmark, the scores were normalized to 100 residues according 

to the method proposed by Carugo and Pondor76 and used in Smith.37 Notably, the work reported 

here deviated from Smith’s method, performing further analysis with only the top scoring decoy 

for each complex in triplicate. In comparison, the original study averaged the RMSD across all 

Scheme 2-1: Complex RMSD calculation for the TagDock replication experiment. A.i)  TagDock 

best scoring decoy. A.ii) RCSB PDB crystal target. A.iii) Unbound starting components. A.i-iii 

were superimposed using the mmaker tool in Chimera 1.16 to produce B. The PDB reference was 

removed, and the RMSD between components of the decoy and the superimposed, unbound 

structures were calculated (C). 
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refined decoys for each complex. It was expected that while this approach might produce less 

consistent results than those published in Smith, any method that could effectively discriminate 

between two decoys of comparable TagDock score would either supersede such a tool or require 

some explicit knowledge of the structure these methods attempt to interrogate. Further, Smith 

established that TagDock decoys closely converge to an average structure in most cases, adding 

validity to the modification. Results of the replication study are discussed in detail in section 3-1. 

2.4 Sampling Conformational Space 

Once a working benchmark had been developed, it was possible to begin testing algorithms 

that searched conformational space. In previous work, members of our lab implemented a standard 

simulated annealing algorithm to accelerate protein conformational motion.77 Initial efforts in this 

work sought to replicate the results of the previous study. Molecules of interest were analyzed 

using AMBER 1446 installed on a high performance computing cluster running Linux CentOS 6.10 

and OpenPBS. Molecules were parametrized using the ff14SB force field78 and the AMBER 

tLEAP tool. Initial structures were sourced from the ZDock benchmarking database74 as discussed 

in section 2.2 and minimized using 1,000 steps of steepest descent minimization, followed by 

1,000 steps of conjugate gradient minimization. The system was then simulated using a Langevin 

thermostat,79 approximating an NVT ensemble and enabling temperature control. The target 

molecule was considered in vacuo because the Langevin thermostat simulates atomic collisions 

between the molecule and a solvent. To replicate the previous work, the ZDock entry 

`1F6M_l_u.pdb` was heated from 0K to 1000 K over 18 ps, simulated at 1000 K for 124 ps, cooled 

to 300 K over 18 ps, and simulated at 300 K for 100 ps. This simulation is demonstrated in detail 

in Scheme 2-2, and annotated example submission scripts are included in Appendix B. All 

simulated annealing runs used these example scripts, with modifications as noted throughout. 



16 

 

RMSD analysis was performed in CPPTraj,80 except as specifically indicated. 

After initial replication trials qualitatively and quantitatively demonstrated deficiency in 

conformational sampling, a series of optimization experiments were performed to identify useful 

variables for further investigation. Simulated annealing was performed on the “r” component of 

1F6M, according to the recipe in Appendix B, except as noted below. This molecule was chosen 

as a model system because of its highly flexible docking, poor TagDock score, and relative ease 

of use. The crystal structure was parametrized using the ff14SB force field and simulated in 

AMBER 14. A temperature optimization was performed by running a series of simulations varying 

the maximum temperature of the annealing protocol, Tmax (see scheme 2-2). The temperatures 

considered were 300 K, 500 K, 750 K, 1000 K, 1500 K, 2000 K, 2500 K, and 3000 K. Resultant 

Scheme 2-2:  Simulated annealing temperature scheme as a function of time. A molecule of 

interest is first minimized, before being heated to an annealing temperature. The elevated 

temperatures allow the molecule access to more of its possible conformational space during a 

production run at Tmax before being cooled down and allowed to relax at a physiological 

temperature. 
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structures were analyzed by calculating the RMSD between the trajectory and the bound complex 

and with TagDock, optimizing for best-scoring structures. A thermostat optimization was 

performed by varying the thermostat between the Langevin79 and Berendsen81 thermostats (ntt=3 

and ntt=1, respectively). Finally, a simulation time step optimization was performed by varying 

the time step between 2 fs, 1 fs, and 0.5 fs (dt=0.002, dt=0.001, and dt=0.0005). 

While these optimization studies were informative, qualitative analysis of the data 

produced in the experiments suggested a need for a more thorough investigation of protein 

dynamics at different temperatures. A rapid heating experiment was performed to evaluate protein 

denaturing dynamics as a function of temperature. “R” components of 1CGI, 1F  , 1GPW, 1IBR, 

1J2J, 1XD3, 1ZM4, 2AYO, and 2HRK were parametrized using the ff14SB force field and 

simulated in AMBER 14. The structures were minimized using 1000 steps of steepest descent 

followed by 1000 steps of conjugate gradient minimization. Structures were then heated to 3000 

K over 300 ps. The Kabsch and Sander Define Secondary Structure of Proteins algorithm82 as 

implemented in UCSF Chimera 1.1675 was used to assign secondary structure, and the fraction of 

secondary structure residues retained was calculated as a function of temperature. Finally, the total 

energy of the simulation was plotted as a function of the temperature for each heating trial. This 

information was used to inform future decisions regarding annealing temperature. A synthesis of 

the temperature optimization data and the results of the secondary structure retention study 

suggested an optimal annealing temperature of 750 K. This is discussed in detail in section 3-2. 

2.5 Evaluation of Structural Identification Techniques 

The third challenge to proposing a novel workflow was identifying structures that were 

representative of native, native-like, or physiologically possible protein conformations (<2 Å 

RMSD from crystal structure). Early investigation sought to resolve this challenge by finding some 
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correlation between these structures and RMSD values that might be derived from a priori 

information. Simulations were initially analyzed by evaluating the RMSD between each frame of 

the simulation and some reference, as summarized in Table 2-1. Later, it was determined that an 

anisotropic metric was necessary to monitor conformational changes with some sort of 

directionality, and principal components analysis (PCA) was implemented to provide this metric. 

PCA is an established statistical method65,66 that correlates atomic motions in a protein 

trajectory and uses those correlations to reduce the complexity of a trajectory dataset. Suppose a 

protein structure, q, is a 3N vector of cartesian coordinates, where N is the number of atoms in the 

protein. A trajectory, A, is then a q×
T

dt
 matrix of protein structures, where T is the simulation time 

and dt is the simulation time step. PCA first calculates the average structure, 〈q〉=
dt

T
∑ qT

dt=0 , and 

the deviation from the average for each atom at each simulation step, ΔAdt= Adt-〈q〉. Then, 

〈𝛥𝐴 𝛥𝐴𝑇〉 is the 3N×3N variance-covariance matrix. The eigenvectors of the variance-covariance 

are always positive, real vectors representing correlated sets of atomic motions. When sorted by 

decreasing eigenvalue, the first i eigenvectors describe collective motions of the protein, and the 
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Table 2-1: Summary of RMSD calculations and the corresponding reference. 
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first j eigenvectors describe virtually all of the motion of a trajectory (j is typically <20% of 3N). 

This allows data set dimensionality reduction of ≥ 0% across trajectories, and it allows clear 

investigation of protein collective motions. Proteins 1IBR, 1CGI, 1F6M, 1J2J, 2AYO, and 2HRK 

were annealed as described in Appendix B, and results were analyzed with PCA to determine the 

method’s fitness for this application. 

2.6 Performing Protein Docking and Optimizing Native-Like Structures 

After methods were implemented to accelerate and monitor protein conformational motion, 

it was necessary to optimize the workflow to select protein motions that bias the trajectory towards 

a physiological structure. For reasons discussed in Section 1.2.2, it was deemed valuable to limit 

nonphysical or arbitrary biases in any proposed method. A logical approach, then, was to model a 

hybrid theory of protein docking that synthesized the conformer selection and induced fit models 

of protein interactions. Using the tools implemented above, the first step was to perform rigid 

docking with TagDock. When atomic or chain overlaps existed, the chains of the decoy were 

translated to remove these interactions, and the refined decoy was then submitted for simulated 

annealing at the optimized temperature of 750 K. During the annealing process the stable “l” 

component was constrained using a harmonic restraint of 5.0 
kcal

mol⋅Å
2, allowing that component some 

flexibility while maintaining its initial conformation. The molecular ensemble was monitored 

using PCA and backbone RMSD, and promising structures were minimized and redocked with 

TagDock. Finally, all-atom RMSDs were calculated for the docked decoys to compare with initial 

benchmarks. 
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3. Results and Discussion 

3.1 Replicating the TagDock Publication 

 Early work in this study created a modern TagDock benchmark by replicating the work 

reported by Smith et. al.37 TagDock was used to perform molecular docking on those structures 

existing in common between ZDock benchmark 4.073 and 5.5.74 The 100-residue normalized root-

mean-square distance (RMSD100) between each best-scoring resultant structure and its 

corresponding protein databank (PDB) crystal structure reference was then calculated according 

to scheme 2-1. The results of this benchmark were binned at 1 Å and are reported in Figure 3-1 

adjacent to the results of the original study. While specific trends are not identical between the two 

sets of results, a few broad conclusions may be drawn. The results reported in this study show 

Figure 3-1: Comparison between the replicated TagDock benchmark (A) and (B) the original data 

as published in ref. 37. In each case, normalized root-mean-square differences (RMSD100) were 

calculated between the TagDock decoys and the reference complex crystal structure. These scores 

were binned to 1 Å and plotted as a fraction of the total set. While clear differences exist in the 

trends between (A) and (B), both benchmarks support that TagDock is capable of generating high 

quality decoys. This is evidenced by high population of scores in RMSD100 < 3 Å. Adapted with 

permission from Smith, J. A.; Edwards, S. J.; Moth, C. W.; Lybrand, T. P. TagDock: An Efficient 

Rigid Body Docking Algorithm for Oligomeric Protein Complex Model Construction and 

Experiment Planning. Biochemistry 2013, 52 (33), 5577–5584. Copyright 2013 American 

Chemical Society. 
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significantly worse RMSD100 than those reported by the original authors. While the initial study 

reported 86% of structures with an RMSD100 less than 3 Å for the 12-restraint set, this study reports 

only 56% of structures with such close matches in a similar benchmark.  

Several possible sources are suspected for this inconsistency. For example, this work 

reports 17% of structures with an RMSD100 greater than 15 Å, while the original reports none, 

suggesting some change in input or methodology. Such a change could come from different 

starting structures, problematic restraint files, or insufficient sampling size. Given sampling 

methodology and restraint files were exactly replicated from the original study while starting 

structures were only closely replicated, it seems reasonable that some inconsistency exists between 

the starting structures used in this work (ZDock benchmark 5.5) and those used in the original 

(from ZDock 4.0). In theory, this should be simple to examine. However, benchmark 4.0 is no 

longer freely available online. Further, TagDock requires custom preprocessing, meaning even if 

original benchmark 4.0 files could be obtained, the necessary preprocessing may have caused some 

meaningful change in order or structure that would only be indicated in the authors’ original input 

files, meaning a direct comparison is no longer possible. 

Another plausible reason this benchmark was less effective lies in a slight methodology 

change between this work and the original. Smith et al. reported RMSD100 values that represented 

an average between all structures within two standard score deviations from the best scoring decoy. 

In this work, however, scores were only reported for the best scoring structure. While this change 

likely affected the reported scores, Smith established a tight convergence amongst the top scoring 

cluster, with decoys differing by less than 1 Å in over 90% of cases. Then, any difference resulting 

from this methodological change is likely to be small, except in a few special cases. 

Alternatively, a change in methodology regarding RMSD100 calculation could account for 
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the score difference. The authors did not report the method of RMSD calculation in the initial 

study, and it is reasonable to assume they performed a standard pairwise calculation of distances 

relative to the known crystal structure. In contrast, this work controlled for conformational change 

by orienting the best matching core region of an unbound reference structure to the PDB crystal 

structure and using the resulting pseudostructure as a reference, as described in section 2-3. In 

theory, this methodological choice should have eliminated the effects of conformational change 

while still demonstrating the toolkit’s effectiveness in predicting docked partners when little 

conformational change is present. In practice, however, it is plausible this method instead biased 

simulations towards orientations that matched well in core regions but failed to effectively reduce 

overall distance to the reference structure. This is a known weakness of RMSD calculations83 and 

it is supported when comparing the relative score by difficulty class. Though “difficult” structures 

should have benefitted most from the adjusted analysis protocol, 9 of 18 difficult cases reported 

scores over 10 Å, while only 22% of medium cases and 20% of easy cases scored the same. 

Finally, since TagDock is a stochastic method, it is possible the parameters used did not 

fully enumerate the conformational space in a sufficient manner to converge, but given the 

substantial number of decoys considered, this seems unlikely. How, then, can this benchmark be 

validated? It was concluded that a direct comparison to the average RMSD100 value as reported in 

Smith would be sufficient to exclude some cases, providing some modicum of validity to the 

remainder. In 37 cases (30%), the RMSD100 value reported in this study was greater than 100% 

different than those values reported in Smith. These cases were classified as invalid, and the 

remaining 90 cases were accepted. 

The trimmed benchmark was used to evaluate a core assumption of the early work. That 

is, the docking penalty score reported by TagDock was assumed to correlate to the actual RMSD 
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of the structures being evaluated, with respect to the unbound complex (RMSDU). Because Smith 

et al. established that decoys with very small docking penalty scores correlated to a native-like 

bound structure, it was determined that minimizing penalty score could be useful as a metric to 

approximate RMSD to a bound crystal structure (RMSDB). While this approach enables some 

estimation when a crystal structure is unavailable, running the TagDock analysis for every 

structure in a trajectory is nontrivial: in early trials, the toolkit required about 0.75 processor hours 

per cycle. Then, an analysis across a 1,000-frame simulation would require almost 100 

computational node hours. This suggests a need for some rapidly accessible metric that can predict 

a trajectory’s penalty score without requiring significant computational resources. The trajectory 

RMSDU was a likely option, and it was assumed this metric might vary in some predictable 

fashion with respect to the docking penalty score. TagDock penalty scores are a function of 

distance, being calculated using distance restraint violations, yet some initial simulations implied 

the correlation between penalty score and RMSDU was weak. To investigate this assumption, the 

docking scores of the trimmed benchmark were plotted on the horizontal axis and the 

corresponding RMSDU was reported on the vertical axis. This plot is reported in Figure 3-2. The 

trend in this data is not immediately apparent, though a Pearson correlation test (≈ 0.53) indicates 

a moderate correlation between docking score and RMSDU. However, these results are 

complicated by the nature of the penalty score. Though RMSD is an absolute, isotropic metric in 

cartesian space, TagDock calculates penalty scores in a one-dimensional distance space. This 

means solutions TagDock cannot distinguish may vary drastically in RMSDU or RMSDB, 

yielding significant variation in the predictive value of the docking metric (consider, e.g., points 

(61, 1.7) and (11, 13.3)). This highlights the need for stronger metrics to qualify structures when 

quaternary structure is not known. 
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Figure 3-3 presents an experiment to further characterize this core assumption. Each frame 

of an early trial was docked using TagDock, and the results of the trial were plotted to investigate 

the correlation between the two metrics. In panel A, the black line indicates a smoothed, 

Figure 3-2: Demonstration of weak correlation between docking penalty score and RMSD to 

unbound reference across the ZDock benchmark. While there appears to be some correlation 

between TagDock score and RMSD, as evidenced by a Pearson correlation score of 0.53, the data 

shows no clear visual trend and is broadly dispersed across the field of the plot. 
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normalized docking score for each frame of a 1000-frame molecular dynamics (MD) simulation. 

Likewise, the green line indicates the smoothed, normalized RMSDU. These graphs appear to have 

Figure 3-3: Further demonstration of weak correlation between docking penalty score and RMSD 

to unbound reference across a single molecular dynamics run. A) The RMSD between the 

trajectory and the unbound crystal structure (black) and the frame’s corresponding TagDock 

penalty score (green) plotted as a function of time. While the metrics both trend upwards after 

t=60 ps, distinct differences exist in the behavior of the two curves, supporting the hypothesis of 

a weak correlation. B) The normalized RMSD plotted as a function of the normalized docking 

penalty score. While the data has a slight upward trend as docking score increases, the high 

variance suggests RMSD is a poor predictor of docking score. 
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some features in common, and when plotted directly against each other (panel B), it becomes clear 

that there exists a weak correlation between the two variables. A Pearson correlation value of 0.3 

supports this conclusion. Notably, a marked change in the correlation occurs around frame 600, 

and the docking score becomes much more closely aligned to the RMSDU (Pearson1-600 ≈ 0.21; 

Pearson601-1000 ≈ 0.57). When considered in the context of the data (high penalty scores and RMSD 

values), the trend indicates that a high RMSDU may be used as a discriminator to separate 

denatured structures from candidates for further analysis.  

3.2 Sampling Conformational Space 

While significant value was found in characterizing the relationship between RMSDU and 

the complex’s TagDock penalty score, the main body of the work reported here focused on the 

central challenge of the project: efficiently sampling conformational space. Previous work in the 

group had developed a recipe for simulated annealing77 as the starting point for this sampling 

problem, but the results were only a marginal improvement against the results reported in Smith 

et. al.37 It was logical, therefore, to replicate this study to confirm the results of the previous work. 

One production step of a simulated annealing run was extracted and the results are reported in 

Figure 3-4 with a direct comparison to the work performed by Gray.77 Panel A is the replication 

study, and panel B indicates the results reported by Gray. The trends closely match between the 

two works, indicating a successful replication. In each case, the solid bottom line represents the 

RMSD between the trajectory and the first frame of the production cycle (RMSD1). The increasing 

trend in RMSD1 indicates a change in structure as the annealing step proceeds, signifying some 

conformational motion. Likewise, the dotted middle line represents the RMSDU and the increasing 

trend in this metric indicates conformational motion away from the unbound crystal structure. 

Because this work attempts to address the case of proteins undergoing significant backbone 
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conformational shift during interaction, it is expected that effective sampling in this metric should 

approach some RMSDdiff, defined as the backbone root-mean-square difference between the 

unbound and the bound structures. Such a trend, however, is not apparent in these trials, indicating 

a lack of convergence and ineffective sampling. The upper line, representing RSMDB, further 

supports this conclusion. The increasing trend in this metric opposes that of optimal sampling, 

which should trend to zero. In context, the successful replication of the previous work, then, served 

only to verify a chain of evidentiary continuity; this was used as a reference point for future work. 

Assuming the classic simulated annealing algorithm was effective to enhance sampling of 

molecular dynamics simulations to optimize conformational motion upon protein docking, it was 

reasonable to perform an optimization study to interrogate changes to the annealing output as 

system parameters were varied. The first and easiest parameter to vary was the system heating 

temperature, Tmax. The receptor component of ZDock entry 1F6M (1F6M-r) was simulated as 

indicated in Appendix A, varying Tmax between 500 K, 750 K, 1000 K, 1500 K, 2000 K, 2500 K, 

and 3000 K. An additional set of trajectories at 300 K was utilized as a control experiment. Due to 

the rarity of the target events, these simulations were performed in nonuplicate. None of the 

trajectories converged to the bound, native-like structure, so representative trajectories from the 

experiment are summarized in Figure 3-5. Two parallel metrics are used to characterize the data: 

panel A indicates the RMSDU, indicating conformational motion away from the starting point. 

The trend in this data is clear: as simulation temperature increased beyond 500 K, the protein 

rapidly adopted novel structures, differing from the unbound component. The temperature-

correlated increase in average annealed RMSDU (t ≥ 1 0 ps) and maximum R SDU support this 

conclusion. Likewise, panel B, indicating the RMSDB, provides further support for the conclusion 

that the simulation underwent increased motion. The trajectory at 750 K (TRMSD) is especially  
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Figure 3-4: Demonstration of RMSD values as a function of time and comparison between this 

work and previous work in the lab. A) The replication study produced in this work. B) The original 

study as reported in ref. 77. In each case, the bottom line is the RMSD between the molecule and 

the first frame of the simulation; increased values in this metric indicate some conformational or 

structural motion away from the starting crystal structure. The middle line is the RMSD between 

the trajectory and the crystal structure of the unbound complex. A change in this metric is expected 

to correlate with effective sampling, though it is expected to converge to some value. The upward 

trend in the metric suggests protein denaturing. The upper line is the RMSD between the trajectory 

and the crystal structure of the bound complex. Applications for the methods proposed herein will 

not have access to this metric, but a decreasing trend indicates sampling towards the structure of 

the bound complex. 
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notable here. While the simulation indicates increased conformational space searching away from 

the unbound starting structure, the protein shows little indication of denaturing. This combination 

of behavior suggests an exceptionally fluid trajectory that maintains some biological relevance. In 

fact, TRMSD outperformed the 300 K room temperature control experiment with respect to sampling 

towards the bound structure of the complex. This is encouraging, as it indicates sampling 

temperatures up to 750 K may be useful to accelerate conformational space searching.  In 

comparison, literature values for simulated annealing schemes tend to vary broadly and do not 

often range above 500 K.56,84,85 Since atomic root mean speed correlates to the square root of 

temperature, the 2.5-fold increase in temperature between 300 K and 750 K should correspond to 

a 35% increase in atomic speed in addition to the freedom of motion gained by increasing the 

kinetic and potential energy of the protein. If properly harnessed, these atomic speed and kinetics 

increases should result in a corresponding decrease in computational effort. However, it is 

nontrivial to make effective use of these properties of the high-temperature state. This is 

demonstrated by the nature of the plot of the RMSDB vs time, Figure 3-5 (B). While the 

trajectories at 300 K, 500 K, and 750 K accessed space that was isotropically similar to the starting 

structure (indicated by the constant trend in RMSDB), the structures did not converge to the bound 

complex, suggesting incomplete or ineffective sampling. This behavior stands opposed to the 

behavior expected from an effective enhanced sampling method: a protocol producing rapid, 

repeated convergence in RMSDB would be an excellent enhanced sampling method, and the lack 

of convergence in this simulation suggests that while increasing Tmax beyond temperatures used in 

typical schemes might improve the breadth of accessible sampling area and accelerate 

conformational motion, this simple optimization is insufficient to produce convergence to some 

global minimum. 



30 

 

 Another compelling bit of data can be gleaned from these same thermal simulations. When 

comparing the average results of the cooled RMSDU reported in Figure 3-5 (A) (t ≥ 1 0 ps), the 

curves seem to vary with some regularity. While this behavior (denaturing as a function of Tmax) 

is expected, it is less clear why structures simulated at Tmax = 300 K and Tmax = 500 K do not 

demonstrate the same behavior in the metric. Instead of denaturing as a function of temperature 

like the Tmax ≥ 750 K runs, these two trajectories trend to R SDU ≈ 3.5. Describing the nature of 

this change in behavior might reasonably propose an optimal Tmax, so an attempt was made to 

linearize the average RMSDU during the cooled production run (RMSDU-2; t ≥ 1 0 ps). The 

quantity ln(RMSDU-2) was found to vary linearly with inverse temperature for Tmax ≥ 750 K, and 

this linearization is demonstrated in Figure 3-6. Figure 3-6 clearly demonstrates that above some 

flexible temperature, Tflex, trajectories vary linearly, yet below Tflex, the nature of the variation is 

far different. Interpolation of the line of fit between structures simulated above Tflex (750 K to 3000 

K, as described above) and structures simulated below Tflex (300 K and 500 K), suggests Tflex for 

1F6M is 602.5 K. While the exact cause of the change in behavior above Tflex is not clear from this 

experiment, it may be that the behavior is a function of the folded state of the protein: as the target 

structure degrades to a linear, unfolded chain of residues, the RMSDU will asymptotically 

approach the RMSD between the bound structure and the amino acid chain, matching the 

logarithmic behavior predicted by the linearization; no comparable behavior is immediately 

apparent for structures simulated below Tflex. For this reason, it is assumed that structures simulated 

above Tflex for long periods of time will consistently denature, while structures simulated below 

Tflex will trend to native-like. 

The results of the temperature optimization made it clear that it was necessary to 

understand the denaturing behavior of proteins in a different manner, so an experiment was  
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performed to quantify the denaturing process as a function of temperature. Nine different proteins 

from each difficulty class of the ZDock database were rapidly heated, and the fraction of secondary 

structure retained between the simulation and its starting crystal structure was plotted as a function 

of temperature, as reported in Figure 3-7. While theoretical approaches exist to model this 

process,86,87 it was suspected that direct structural analysis could provide sufficient evidence to 

Figure 3-6: Variation of the average annealed RMSD between the trajectory and the unbound 

crystal structure vs inverse temperature. For structures annealed to a temperature higher than 500 

K, the inverse temperature varies with the natural logarithm of the root-mean-square distance 

between the trajectory of the relaxed structure and the unbound crystal structure. Unexpectedly, 

simulations at 500 K and 300 K do not vary in the same manner, suggesting enhanced stability. 

Points indicated in triangles are T ≤ 500 K, points indicated with circles are T ≥ 750 K. The point 

indicated at T = 602.5 K is interpolated between the lines of fit, and it is suspected to correlate to 

some minimal temperature where flexible motion might first be accessed. 
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approximate the trajectory’s status as folded or denatured at a given temperature. This might 

provide support for either TRMSD or Tflex as an optimal simulation temperature. Given that a totally 

denatured protein has no secondary structure and that a native, globular protein has significant 

secondary structure, the retention of secondary structure as a function of temperature was used to 

indicate the folded status of the protein. It was inferred that because secondary structure elements 

provide stability, a trajectory maintaining its secondary structure was more likely to adopt a native-

like bound structure than one lacking secondary structure. This approach also assumed that few 

residues gained or lost secondary structure when interconverting between conformations. The 

degradation visible in Figure 3-7 was modeled by numerically minimizing the sum of squared 

residuals to a logistic curve, eqns. (2-4): 

𝑆(𝑇) = 𝑎 (1 −
1

1 + 𝑒−𝑏(𝑇−𝑇0)
) (2) 

𝑅(𝑇) =  𝐹𝑠𝑠 − 𝑆(𝑇) (3) 

𝑅𝑆𝑆 = ∑(𝑅(𝑡))
2

 (4) 

where a and b are vertical and horizontal scaling factors, respectively, T is the Langevin 

temperature, T0 is a horizontal translation factor indicating the inflection point of the curve, and 

Fss is the fraction of secondary structure predicted by the trajectory at a given temperature. The 

curve can be utilized to approximate three stages of thermal denaturation. The first is a slow 

decrease where the structure might be considered native-like. This region ends at approximately 

615 K, as early reductions in secondary structure decrease the heat capacity of each molecule,88 

accelerating the loss of secondary structure. Finally, beyond about 1200 K, the protein can be 

considered totally denatured, only adopting a few secondary structure residues by random 

association. This experiment, then, is consistent with selection of either TRMSD or Tflex as optimal 

annealing temperatures for performing conformational space search for 1F6M. While it is useful 
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to maximize temperature to access novel regions and to accelerate atomic motion, it is also 

necessary to produce structures that might reasonably be part of the physiological conformational 

ensemble. Because of the many local energetic minima available to totally denatured proteins (see 

section 1.2.2), trajectories completely lacking secondary structure are less likely to adopt 

physiological conformations than trajectories that retain a larger degree of their original secondary 

structure. This is because the retained secondary structure helps to create energetic funnels89,90 that 

favor physiological states. Then, it is implied that one must necessarily strike a balance between 

the thermal simulation bias prescribed herein and the practical consideration of the biological 

relevance of the resulting structure.  

 This implication may be intuited in another manner: suppose a protein may be crudely 

modeled in three dimensions by a two-variable free energy function. The protein may first be 

considered in the unbound state, a local energetic minimum. Alternate states, including the bound 

global energetic minimum, may be accessible by overcoming some energy barrier. While 

conventional molecular dynamics simulations may ultimately achieve the target motion, the high 

energetic barriers mean any observed transitions will be slow, as discussed in section 1.2.2. Then, 

a large increase in thermal energy enables conformational motion towards nearby local minima, 

but it does not direct or distinguish between those minima, as the elevated temperature enables 

motion to many potential states, meaning motion towards denatured states is far more probable 

than motion towards native-like states. However, if it is assumed that a physiological 

conformational transition path follows an optimal, low-energy path from the unbound to the bound 

state in the presence of a docking partner, it becomes clear that thermal tuning of the free energy 

surface might selectively facilitate target conformational transitions a priori, reducing the 

likelihood of conformational transitions towards denatured states. 
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 This hypothesis prompts another review of the degradation data, this time through the lens 

of protein energetics. If some clear relationship exists between temperature and protein potential 

Figure 3-7: Thermal degradation of secondary structure across a subset of the ZDock database. 

The vertical axis indicates the fraction of residues in secondary structure (as defined by the DSSP 

algorithm) for each step in the trajectory with respect to the number of secondary structure residues 

in the crystal structure of the unbound component. The horizontal axis indicates the simulation 

frame temperature, as calculated by the Langevin thermostat. Each dot represents a simulation 

frame from either 1CGI-R, 1F6M-R, 1GPW-R, 1IBR-R, 1J2J-R, 1XD3-R, 1ZM4-R, 2AYO-R, or 

2HRK-R. The curve of fit is a sigmoid of the form indicated in eqn. (2), where T is the system 

temperature, T0 is some inflection temperature, and a and b are vertical and horizontal scaling 

factors. Values above 1.0 indicate a protein adopting greater secondary structure when minimized 

than was present in the PDB coordinates file. The decreasing trend indicates thermal degradation 

of secondary structure that varies with temperature. This was used as a qualitative measure of 

protein denaturation, supporting the assignment of 750 K as a reasonable annealing temperature 

for further study.  
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energy at the interface between the first and second regions indicated by the secondary structure 

retention experiment (around 600 K), then such a relationship might suggest the appropriate 

temperature for thermal tuning, implying an optimal Tmax. However, when protein free energy is 

plotted against simulation temperature, it becomes clear that optimizing Tmax through energetics is 

more complex than the secondary structure retention method implied. This is likely because the 

kinetics of the retention simulation act to limit the rate at which the proteins denature. Figure 3-8, 

panel A plots the actual AMBER molecular potential energy, Eptot, as a function of simulation 

temperature. For simplicity, panel B presents a linear fit of the same data. Because the simulated 

proteins vary widely in heat capacity and initial potential energy, the slopes (a function of heat 

capacity) and intercepts (a function of minimum potential energy) vary, meaning no single 

annealing temperature is optimal for all proteins. Instead, this data suggests it is necessary to tune 

the annealing temperature for each intended application. Since a protein with low potential energy 

exists in an energetic funnel, the optimal simulation temperature projected by energetics, TE, 

should be some temperature where the total potential energy of the molecule, Eptot, is zero or 

positive. To minimize the number of available states and increase the likelihood of sampling 

towards the bound state, TE should be minimized, suggesting TE should be the temperature where 

Eptot = 0. Such a temperature provides thermodynamic impetus for the conformational shift in a 

manner emulating the established metadynamics simulation technique,60 except that the simulation 

is biased by thermal tuning from the Langevin thermostat rather than by a Gaussian penalty while 

maximizing the probability of sampling towards the target. Figure 3-8, panel C reports relevant 

temperatures correlating to Eptot = 0 for each trial of the secondary structure retention experiment, 

determined by calculating the x-intercept of the line of fit. Of particular interest is the trial for 

1F6M, as it has a direct comparison to the thermal optimization data reported in Figures 3-5 and 
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Figure 3-8: Plots of AMBER molecular potential energy (PE) as a function of temperature. A) 

Molecular dynamics potential energy as a function of frame temperature, demonstrating the effect 

of thermal modification on the energy states available to a protein. Increased potential energy 

allows access to less favorable conformational states. B) Trend lines of panel A, indicating the 

temperature at which the potential energy goes from negative to positive. It was hypothesized that 

proteins simulated above PE = 0 would trend towards denatured. C) The intercept temperature 

indicated for each protein. Note the vertical axis starts at T = 500 K to maximize vertical resolution. 
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3-6. Notably, the reported temperature of 686 K is higher than Tflex (602.5 K), suggesting that 

protein trajectories begin to access fluid conformational space before reaching Eptot = 0, though 

further efforts are necessary to characterize and understand the nature of this relationship. 

 In summary, two different experiments were performed to interrogate the optimal 

temperature for performing simulated annealing on 1F6M, yielding disparate results as 

summarized in Table 3-1. Because of the disparity of suggested temperatures between the 

approaches, the annealing temperature for future trials was determined based on a conservative 

interpretation of the direct thermal optimization. Since TRMSD enhanced conformational motion 

relative to the starting structure while maintaining similar structural integrity to that of the lower 

temperature simulations (see Figure 3-5), Tmax was set at 750 K for future trials. 

 Though temperature was the most thoroughly optimized parameter, trials were also 

performed varying the temperature control between Langevin79 and Berendsen81 thermostats. 

While an optimized isokinetic Nosé-Hoover chain thermostat91 may present another well-suited 

candidate for thermostat optimization, it was not implemented in the AMBER package until the 

2016 release, two releases after the software used in this research. The Andersen thermostat92 was 

excluded from the optimization because it modifies individual particle motions randomly, meaning 

a macromolecule simulated using the Anderson scheme would not experience even temperature 

regulation. This makes the scheme ill-suited for simulations of proteins. While thermostat options 

were somewhat limited, more control was available over the simulation time step, which was 

 ethod
Temperature 

(K)
Name

Direct inspection of R SD curves as a function of temperature750TR SD

Interpolation between lines of fit for the two linear regions of Figure 3 -  03Tflex

Temperature corresponding to simulation  ptot = 0   T 

Table 3-1: Comparison of disparate temperatures considered for Tmax and the methods used to 

find those temperatures.  
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varied between 2 fs, 1 fs, and 0.5 fs. The results of these two optimization studies are reported in 

Figure 3-9. Panel A reports the results of the thermostat optimization, and panel B reports the 

results of the time step optimization. The trends from these simulations are clear: the time step 

optimization has little effect on the quality of the simulation, provided dt ≥ 0.001. Since this had 

no substantial effect on the quality of the simulation, dt = 0.001 was chosen as the time step for 

enhanced temporal resolution and because this value is recommended in the AMBER 

documentation. 

 The thermostat optimization, however, had slightly different results. In the trajectory for 

the Berendsen thermostat, the trajectory destabilizes and denatures the structure early in the 

simulation before rubber banding back around 11.5 ps. This unusual behavior suggests that the 

Berendsen thermostat is an inferior thermostat for this purpose, and the Langevin thermostat was 

Figure 3-9: Graphs of RMSD vs time for time step (A) and thermostat (B). The lack of a broad 

disparity in (A) indicates that any of the proposed time steps might reasonably be used for 

simulations. The time step dt = 0.001 was used because it was recommended in the AMBER 

manual and to balance resolution with efficiency. The rapid spike-recoil pattern at t=150-350 in 

the Berendsen thermostat in panel B suggests the method is less effective for simulated annealing, 

so the Langevin thermostat was chosen for future runs. 
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maintained as a superior choice for this application. This is expected because the Berendsen 

thermostat performs only a velocity rescaling step as opposed to the atomistic acceleration and 

damping of the Langevin thermostat, meaning velocity changes unevenly through the 

macromolecule.  

 3.3 Implementation and Evaluation of Principal Components Analysis 

 Once some optimization studies had been performed, it was necessary to implement an 

anisotropic metric for evaluating trajectory motion. While RMSD between the trajectory and the 

bound structure of the complex (RMSDB) is an excellent metric for evaluating conformational 

motion between the states, this metric requires a priori, atomistic knowledge of the bound structure 

of the protein multimer. The intended use case for this method, however, is for situations where 

only limited knowledge of the multimer is available (e.g., only several point-to-point distances 

between residues). Then, this use case is mutually exclusive with usage of RMSDB. Likewise, as 

discussed in section 3.1, it was found that RMSD to the unbound structure (RMSDU) does not 

strongly correlate to any “correct” structure. This means in the absence of some additional metric, 

it will not be possible to evaluate conformational motion of a trajectory in any predictive manner. 

 One generally accepted method to overcome this challenge is to use principal components 

analysis (PCA) to reduce the dimensionality of atomistic trajectories by evaluating the covariance 

between correlated atomic positional fluctuations in a trajectory.65–67  In a sense, PCA can be 

considered a descriptive, statistical relative of normal mode analysis (NMA), using observed 

simulated positions instead of forces to calculate eigenvectors representing correlated motions. 

Kitao65 contains a short, informative section further describing the relationship between PCA and 

NMA. 

 A key value of PCA is its descriptive nature. Since the method uses observed trajectories, 
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any sufficiently large trajectory should indicate all relevant classes of physiological 

conformational motion. However, many of these motions will be random or insignificant; those 

insignificant motions will have a miniscule eigenvalue and may be neglected. For most 

simulations, much of the trajectory may be described with approximately 100 principal 

components (PCs). An example best indicates the power of the method: in a protein with 300 

residues, backbone PCA can provide a dimensionality reduction of over 90% with less than 5% 

loss of precision. Further, the method is especially valuable in this case because each PC, extracted 

solely from the observed trajectory, is anisotropic. Because conformational motion towards a 

target structure will move along a linear combination of these PCs, possible transition paths can 

be identified by tracing conformational motion towards PC extrema, like in the frontier expansion 

sampling method proposed by Zhang and Gong.93 Other relevant implications of this method will 

be discussed in detail in the next section. 

 To validate PCA as a viable method for tracking protein conformational motion at different 

temperatures, an experiment was performed varying the temperature between 300 K and Tmax. The 

trajectories of the simulations were processed according to the principal components analysis 

method in section 2.5, and the first two principal components were normalized and plotted against 

each other. This creates a two-dimensional scatter plot representing relative motions of the 

trajectories along the two lowest frequency correlated sets of atomic fluctuations. An example of 

one such experiment to implement PCA is reported in Figure 3-10. The horizontal axis reports 

normalized motion along the first principal coordinate, and the vertical axis reports normalized 

motion along the second principal coordinate. Due to the nature and complexity of the data set, the 

precise locations of points or lines on this plot may be considered arbitrary; instead, line density 

at a given point represents a much more informative metric for evaluating conformational motion. 
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The black, solid lines, representing the 300 K simulation, are closely packed and often revisit 

locations on the plot. This is indicative of conformational equilibrium around some average 

structure, matching the expected motion of a simulated protein at physiological temperatures. The 

red, dashed lines, however, have a much lower line density and cover a much larger region of the 

graph. These features of the 750 K data set clearly indicate enhanced conformational motion. 

Further, conformational motion towards the target structure (green diamond, (0.33, 1)) is readily 

apparent in one trajectory at high temperature, and it is found near a conformational extreme, 

implying the viability of frontier expansion sampling for further analysis cycles in this case. Other 

PCA implementation and validation experiments were performed for 1CGI, 1IBR, 1J2J, 1XD3, 

2AYO, and 2HRK, and the results of those experiments demonstrated substantially similar trends, 

namely increased sampling breadth at elevated simulation temperature. 

 3.4 Complete Method Implementation and Proof of Concept 

 Finally, an experiment was performed that combined the three key concepts implemented 

in the previous portions of this work. First, TagDock was used to propose a docking decoy for 

1F6M. The decoy was checked for chain or atom conflicts, and upon finding an overlap, the chains 

were translated by the minimum distance necessary to separate the components and stabilize 

simulation energies. The translated decoy was annealed at 750 K as described in Appendix B. 

Principal components analysis was performed on the trajectory, and the first 100 PCs were 

analyzed for correlation to the RMSDB. These first 100 components were chosen as a set to 

describe 96.00% of the motions of the protein while reducing the size of the data set by 89.45%. 

The eigenvalue accumulation data for this set is reported in Figure 3-11, where the horizontal axis 

indicates each νi and the vertical axis reports the accumulated contribution of the eigenvalues as 

described in eqn. (5):  
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Figure 3-10: Conformational motion of 1F6M along the first and second lowest frequency 

motions (principal components 1 and 2, respectively) at different temperatures. Axes are 

normalized for clarity. The line density indicates sampling of a region. The blue lines represent 

trials at T=300 K, while the orange lines indicate trials at T=750 K. The green diamond is the 

projection of the target structure along the selected principal components. The lower temperature 

trials demonstrate tight line density, indicating repeated sampling of a few regions. Meanwhile, 

the orange lines demonstrate a much lower density, indicating increased sampling along the 

slowest motions and suggesting increased sampling along all motions. This result is expected and 

suggests principal components analysis is a reasonable method to interpret simulated annealing 

trajectories. 
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𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  
∑ 𝜆𝑖

𝑛
𝑖=1

∑𝜆
 (5) 

To find a correlation between the principal components and the bound structure, a heuristic 

was developed. First, the initial 40 ps of the annealing simulation were neglected to account for 

thermalization and minor rearrangements not reflecting the high-temperature conformational 

motion of the protein. Next, it was assumed that desirable conformational transitions would be 

simultaneously located at the extremes of several PCs. Therefore, the PCs were rescaled to the  

range [0,1] at each simulation frame according to eqn. (6) and then transformed according to eqn. 

(7): 

𝑀𝑛𝑜𝑟𝑚(𝑡) =
PCi,t − min(PCi)

max(PCi) − min(PCi)
 (6) 

𝑀𝑖(𝑡) = 2 |𝑀𝑛𝑜𝑟𝑚(𝑡) −
1

2
| (7) 

Figure 3-11: Accumulated contribution from principal components (PCs) for 1F6M. The 

eigenvalues (λ) associated with PCs in the range  1, i] are summed and presented as a fraction of 

the sum of all eigenvalues. This metric allows rapid determination of the percent of motions 

captured by the first i PCs. In this case, the first 100 PCs represent 96% of the motion of the protein 

backbone. Utilizing only the first 100 PCs means the trajectory experiences a corresponding 

dimensionality reduction of 89%, from 948 initial PCs. 
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Where PCi,t is the value corresponding to the simulation frame projected onto PC i at time t, and 

Mnorm(t) is the rescaled PC. Because of the complex and descriptive nature of PCs, positive and 

negative directions were considered arbitrary. The transformation in eqn. (7), then, penalizes states 

in the center of the PC while considering states at either extreme to be equivalent. Summing across 

the first 100 Mi at a given t produced an extrema score, which allowed distinction between states 

unlikely to be desirable because they were commonly visited and those states that were 

simultaneously at the edge of many PCs. However, this heuristic failed to account for totally 

denatured states and states that were identical to the crystal structure, so the metric was multiplied 

both by the normalized RMSD to the unbound crystal structure (RMSDUn), produced by rescaling 

RMSDU according to eqn. (6), and by the quantity (1 - RMSDUn). This modified heuristic, Se, 

penalized states that failed to undergo conformational shifts and states that denatured, respectively. 

Finally, the product was rescaled and inverted for convenience. This inversion was performed to 

align the metric with the RMSD to the bound structure that trends to zero as the conformation 

approaches the global minimum bound state. This yielded an extremity metric (EM) score that 

ranked frames by estimated likelihood to undergo a conformational shift towards the desired bound 

structure, with a minimal score indicating a favorable shift. 

𝑆𝑒 (𝑡) =  (∑ 𝑀𝑖

100

𝑖=1

) (𝑅𝑀𝑆𝐷𝑈𝑛)(1 − 𝑅𝑀𝑆𝐷𝑈𝑛) (8) 

𝐸𝑀(𝑡) = 1 − (
Se(t) − min(Se)

max(Se) − min(Se)
) (9) 

 The results of this metric are very encouraging. Table 3-2 compares the minima predicted 

by the EM to the actual minimum RMSDB, while Figure 3-12 presents the EM at each t>40 ps 

directly compared to the RMSDB rescaled according to eqn. (6). In two out of three cases, the EM 

predicted simulation RMSDB minima within 3 ps, while in the third case, the metric failed to 
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clearly predict any significant minimum. While it is unclear the exact cause of the discrepancy in 

the second trial, the corresponding trajectory exhibited a higher amount of denaturing than the 

other trials, so it is possible that this failure is because the heuristic predicted no valuable structures, 

rather than because there exists a non-correlation between the heuristic and the absolute metric. 

 The implications of such a heuristic are significant: a method that rapidly assesses and 

filters conformational motion toward some target or absolute minimum is widely valuable in cases 

where the crystal structure of the complex is well characterized.94–96 A method capable of 

discriminating these motions without knowledge of the bound state, then, is exceptionally 

valuable. As discussed in section 3.3, finding a predictor of RMSDB is difficult when the target 

structure is not known a priori. Yet, EM seems to be a computationally efficient heuristic that 

relies only on simulation parameters to predict frames that have recently or will soon undergo 

significant RMSDB decreases. As a final check, predicted minima were extracted and redocked 

with TagDock. The results of the redocking experiment are reported in Table 3-3. Notably, in the 

two cases where the heuristic closely predicted the simulation RMSDB minimum, the docking 

score of the complex decreased by 41% for trial 1 and 35% for trial 3, reinforcing the implication 

of validity for the EM heuristic. Further, this decreased docking score correlated to an absolute 

RMSD reduction of 44% for trial 1 and 23% for trial 3, indicating the method can successfully 

improve docking predictions compared to the toolkit in the absence of the workflow.  

Difference (ps)
Actual Simulation R SDB 

 inimum ( D Frame)

Simulation R SDB  inimum Predicted 

by  xtremity  etric ( D Frame)
Trial

1.2101510031

75.011 0 102

2. 7  7  3

Table 3-2: Comparison of extremity metric (EM) predictions against minimum simulation RMSD 

to bound complex. The close agreement in trials 1 and 3 suggests the validity of the metric for 

predicting conformational motion towards a target structure, even when the target structure is 

unknown. 
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 Figure 3-12, panel D also reports a compelling result from the simulated annealing 

experiment. The global minimum with respect to the bound structure in the third trial (located at 

t=79.6 ps) is about 5% closer to the bound structure than that of the starting conformation. This 

improvement suggests the potential of the method and its magnitude suggests capacity for a cyclic 

approach seeking convergence to some structure, though further experiments are necessary to 

characterize such a relationship. 

 3.5 Summary 

 In summary, a series of experiments were performed to characterize and optimize a 

simulated annealing workflow for use in an enhanced sampling context. First, the relationships 

between available metrics were interrogated. It was determined that the experimentally derived 

RMSD to the unbound complex has a weak correlation to the TagDock penalty score, which in 

turn has a moderate correlation to the RMSD between the structure and the bound conformation. 

Armed with this information, it was possible to interrogate the intricacies of conformational space 

sampling with simulated annealing. A series of optimization experiments were performed to 

evaluate the optimal temperature, thermostat, and simulation time resolution. It was determined 

that while simulation temperature and thermostat have a significant impact on sampling area, 

sampling resulting from the time resolution (time step) is negligible. Next, principal component 

Change
Final 

R SDB (Å)

Starting 

R SDB (Å)
Change

Final

TagDock

Penalty

Score

Starting 

TagDock 

Penalty

Score

Simulation 

Frame Used 

for Redock

Trial

-3 . 5% . 0  0.02 1 .2 - 1.0 %2 . 0   .5  1.7210031

-12.7 %1 .20  0.0031 .2 7.  % 5.0   0.   1.72 102

-1 . 5%13. 1  0.0  1 .2 -3 . 0%27.20  1. 5 1.727  3

Table 3-3: Comparison of results obtained by extracting frames predicted with the extremity 

metric (EM) heuristic. The close match predicted by the EM in trials 1 and 3 correlated to a 

notable decrease in TagDock penalty score and in RMSD to the bound structure (RMSDB), 

further supporting the hypothesis that the EM may be useful in predicting conformational motion 

towards the bound structure. 
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analysis (PCA) was performed on the trajectories and the conformational area explored along the 

first two principal components (PCs) was evaluated to confirm the value of the statistical method 

in this use case. Because these simulations demonstrated an increase in sampling area when 

analyzed with PCA, it was determined that the method was acceptable for use in this context. 

Finally, a series of simulations were performed to propose and benchmark a novel workflow for 

simulated annealing. After a protein decoy was predicted using rigid docking, the decoy was 

translated to remove chain and atomic overlaps, annealed, and evaluated using PCA. A heuristic 

Figure 3-12: Heuristic predictions and normalized R SDs to bound structure for trials 1-3 and 

total R SD for all trials, compared. A-C) Normalized R SD vs extremity metric (  ) for trials 

1-3, respectively.    minima in trials 1 and 3 closely predict the minimal R SD to bound for the 

trajectory without knowledge of the bound structure a priori. Trial 2, however, does not predict 

any specific minimum. D) Total R SD for all trials, compared. The increasing trend in Trial 2 (to 

Unbound) suggests the failure of the    to predict an R SD minimum may be due to increased 

denaturing associated with the trial. Notably, Trial 3 (to Bound) briefly dips below its initial value, 

and the    recognizes this, suggesting the    may be useful for predicting conformational 

motion towards an unknown structure in a cyclic application. 
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using the first 100 PCs and the root mean square difference between the trajectory and the unbound 

structure was developed to predict conformational transitions, and the metric successfully 

predicted motion towards the bound conformation within 3 ps in two out of three cases. Finally, 

the structure predicted by the heuristic was extracted and redocked with TagDock, yielding a clear 

decrease in RMSD to the bound structure. 
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4. Conclusion 

 As novel technologies and machine learning approaches have expanded the use cases for 

atomistic protein structures, it has become clear that methods to obtain these structures for flexible 

protein complexes continue to struggle when compared to cutting-edge approaches for monomers 

and rigid complexes. It is necessary, therefore, to develop unique methods to efficiently interrogate 

these structures while minimizing necessary a priori information and computational complexity. 

Rigid docking algorithms such as TagDock address these questions by rapidly performing 

molecular docking from a few pieces of biophysical information, provided the input components 

are structurally similar to the “bound” conformation of the protein.  et, finding a “bound” 

conformation is often more difficult than performing molecular docking. Simulated annealing had 

been proposed as a simple method to understand protein flexibility, but work in the field has 

trended towards methods requiring external biases or rapid thermal fluctuation to achieve more 

effective results. The goal of this research was to propose a method that can span the gap, 

performing rapid molecular docking and efficiently optimizing conformational motion towards the 

bound state.  

Ultimately, working toward this goal meant performing several broad evaluation and 

optimization studies before focusing on statistical techniques to predict favorable conformational 

motion. It was determined that extra care was necessary when evaluating initial docking decoys, 

as even though TagDock penalty score strongly correlates to how close a complex is to the “right” 

answer, existing metrics did not strongly correlate to the TagDock penalty score. Because 

TagDock penalty score is still comparatively time-intensive, it is not feasible to simply calculate 

the score for every frame of a simulation, highlighting the need for another metric. Likewise, 

optimization studies revealed the complexity of temperature-induced protein conformational 
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motion, and it was determined that no single optimal annealing temperature exists due to the 

differences in secondary structure and loop regions between different monomers. The temperature 

of 750 K, Langevin thermostat, and time step of 0.001 ps were chosen for 1F6M because of 

superior performance (750 K, Langevin) or ease of use and source recommendation (0.001 ps). 

Accordingly, it is suspected that the thermostat and time step may be held constant across any 

protein studied. The annealing temperature, however, will likely require a calibration for each new 

protein complex. 

The implementation of principal components analysis to track conformational motion also 

provided interesting new ways to monitor the trajectory. By comparing motion along many 

principal components and by biasing the metric towards motion diverging from the initial structure 

but not denaturing, it became apparent that it was possible to predict conformational motion 

towards the bound component, resulting in a commensurate decrease in TagDock penalty score 

and RMSD with reference to the bound structure. In one case, this decrease was nearly 40%, 

suggesting the metric may be highly effective. 

Future work is necessary, however, to characterize the reliability and applicability of the 

novel extremity metric (EM). While the EM was at least marginally effective in each of the three 

trials, it is conceivable that such a correlation may be a rare occurrence or result from some 

unforeseen correlation or property of the trial protein, 1F6M. For example, the hinge-twist binding 

motion inherent to 1F6M may lead to the observed behavior. Therefore, establishing the efficacy 

of the EM will require a more extensive study across several proteins of different classes. Further, 

though the EM predicts most favorable frames from the trajectory, the annealing method does not 

select the “bound” state explicitly, instead relying on conformational motion down the potential 

energy surface as a selection criterion. This behavior is unsuited for single-trial processing; instead, 
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it will be necessary for future work to implement a cyclic approach for more effective results. It is 

unknown whether the EM will maintain efficacy as the simulation approaches convergence. An 

example workflow is proposed in scheme 4-1. 

As the simulation approaches convergence, it will be necessary to lower the annealing 

temperature to reduce the likelihood of conformational motion away from the target. However, 

caution will be necessary to minimize false convergence from the many free energy minima (see 

section 1.2.2). An optimization study will eventually be necessary, then, to evaluate the rate of this 

temperature decrease, as well as to predict the order of magnitude of computational time needed 

to reach convergence. This computational time will be a key metric in evaluating the overall 

strength of the workflow in comparison to other methods such as RosettaDOCK. The niche of the 

   

                      

        

               

          

        

                          

                  

          

            

          

         

        

      

                        

   
   

Scheme 4-1: Proposed workflow implied by the results of this thesis. Combining the extremity 

metric with TagDock docking and simulated annealing in a cyclic workflow may provide an 

effective method to flexibly dock proteins, as indicated by the score improvements that were 

realized using a single cycle of the method. 
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proposed workflow is to rapidly develop low-to-medium-resolution decoys for use with these 

high-resolution methods, so it is important that the production of novel decoys requires much less 

computational effort than the effort needed to produce similar decoys with higher-resolution 

methods. 

Another compelling line of potential research lies in characterizing the critical temperature 

necessary to access flexible conformational space. The thermal optimization of 1F6M produced 

three different optimal temperatures using differing metrics, and understanding the relationship 

between these metrics has the potential to yield rich rewards for computational efficiency using 

high-temperature MD simulations. For example, replica exchange methods sampled across a larger 

thermal range might enable acceleration of conformational motion without increased denaturing. 

While the data from the thermal optimization suggest some critical temperature where the protein 

can efficiently access conformational space without trending towards denaturing, the exact nature 

and extent of this behavior is not readily apparent. Therefore, studies to characterize this behavior 

and examine its reproducibility might be valuable in gaining fine optimization for molecular 

dynamics simulations of protein structures. 
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Appendix A 

Each four-character code listed below refers to an RCSB PDB14 structure. These structures were 

used as reference structures throughout this work, and the corresponding unbound or bound 

components in the ZDock Benchmark 5.574 were used as starting crystal structures or target crystal 

structures, respectively. 

  2 7P1Z  1R0R1 WH1F  1A2K

2   2A5T1R  1 ZD1GC 1ACB

2 TA2A K1R S1K5D1GH 1AHW

2O3B2ABZ1S1 1KAC1G 11A 7

2O  2A F1SBB1K U1G A1B C

2OOB2A O1S  1KTZ1GP21BKD

2OOR2B 21T B1 101G D1BUH

2OT32B  1T  1 AH1H D1CGI

2OZA2C0 1UDI1  01H 11D R

2PCC2CFH1US71  C1H  1DF 

2SIC2FD 1WDW1   1I2 1D  

2SNI2F U1W  1NCA1IB11   

2UU 2G771W 11NW 1IBR1   

3BP 2H7 1 D31OC01I K1 AW

3D5S2H  1  S1OFU1I D1  R

3SG 2H S1   1OPH1IRA1 FN

 CPA2HRK1Z0K1O  1 2 1 W 

7C I2I251Z5 1PP 1 IW1F3 

  FW2I B1ZHI1P H1 K 1F  

BO  2 0T1Z I1P  1 PS1F  

1 A 1 TG1F 1
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Appendix B 

Annotated submission scripts for simulated annealing trials. 

a. Minimization: 

Minimize # script name 

&cntrl # start of script 

imin=1, # flag for minimization 

ntx=1, # read input coordinates; do not read velocities 

irest=0, # run as a new simulation; ignore input file velocities 

maxcyc=2000, # set maximum minimization cycles to 2000 

ncyc=1000, # switch from steepest descent to conjugate gradient minimization after 1000 

cycles 

ntpr=100, # print human-readable progress every 100 steps 

ntwx=0, # do not print intermediate trajectory coordinates 

ntb=0, # do not use periodic boundaries and disable Particle Mesh Ewald calculations 

cut=999, # do not sever bonds within 999 Å 

/ # end of script 

 

b. Heating: 

Heating 

&cntrl 

imin=0, # do not perform minimization 

ntx=1,  

irest=0,  

nstlim=30000, # perform 30,000 simulation steps 

dt=0.001, # use 0.001 ps of time per simulation step 

ntf=2, # omit bond-proton interactions 

ntc=2, # constrain protons for use with SHAKE algorithm 

tempi=0.0, # set initial temperature to 0 K 

temp0=750.0, # set final temperature to 750 K 

ntpr=100, 

ntwx=100, # write trajectory coordinates every 100 steps 

cut=999, 

ntb=0, 

ntp=0, # do not monitor or constrain pressures 

ntt=3, # use Langevin dynamics to control temperature 

gamma_ln=2.0, # Langevin collision frequency γ. Denotes frequency of collisions in ps-1 

nmropt=1, # use NMR restraints and weight changes 

ig=-1, # seed Langevin dynamics from system time 

/ 

&wt type='TEMP0', istep1=0, istep2=18000, value1=0.0, value2=750.0 / # increase system 

temperature from 0 K to 750 K over 18 ps of simulation 

&wt type='TEMP0', istep1=18001, istep2=30000, value1=750.0, value2=750.0 / # 
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simulate at 750 K for 12 ps 

&wt type='END' / # end step control 

 

c. Production I: 

Production 

&cntrl 

imin = 0, 

irest = 1, # perform a “restart” simulation where velocities are read from input file 

ntx = 7, # read coordinates and velocities from input file (identical to ntx=5) 

ntb = 0,  

pres0 = 1.0, # set system pressure to 1.0 bar (can be deprecated; identical to system default 

value) 

ntp = 0,  

taup = 2.0, # set pressure relaxation time to 2.0 ps (can be deprecated; not applicable when 

ntp=0) 

cut = 10.0, # cut bonds between atoms more than 10 Å apart 

ntr = 0, # do not use harmonic restraints to hold atoms in 3D space 

ntc = 2,  

ntf = 2, 

tempi = 750.0, # set initial temperature to 750 K 

temp0 = 750.0, 

ntt = 3,  

gamma_ln = 1.0, 

nstlim = 100000, # simulate for 100000 steps 

dt = 0.001, 

ntpr = 100, 

ntwx = 100, 

ntwr = 1000 # write a restart file every 1000 steps 

/ 

 

d. Cooling: 

Cooling 

&cntrl 

imin=0, 

ntx=1, 

irest=0, 

nstlim=30000, 

dt=0.001, 

ntf=2, 

ntc=2, 

tempi=750.0, 

temp0=300.0, # set final temperature to 300 K 

ntpr=100, 
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ntwx=100, 

cut=999, 

ntb=0, 

ntp=0, 

ntt=3, 

gamma_ln=2.0, 

nmropt=1, 

ig=-1, 

/ 

&wt type='TEMP0', istep1=0, istep2=18000, value1=750, value2=300.0 / # change system 

temperature from 750 K to 300 K over 18 ps 

&wt type='TEMP0', istep1=18001, istep2=30000, value1=300, value2=300.0 / # simulate 

at 300 K for 12 ps 

&wt type='END' / 

 

e. Production II: 

Production 

&cntrl 

imin = 0, 

irest = 1, 

ntx = 7, 

ntb = 0, 

pres0 = 1.0, 

ntp = 0, 

taup = 2.0, 

cut = 10.0, 

ntr = 0, 

ntc = 2, 

ntf = 2, 

tempi = 300.0, # set initial temperature to 300 K 

temp0 = 300.0, 

ntt = 3, 

gamma_ln = 1.0, 

nstlim = 100000, 

dt = 0.001, 

ntpr = 100, 

ntwx = 100, 

ntwr = 1000 

/ 
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