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ABSTRACT

GREY RELATIONAL ANALYSIS AND CANONICAL CORRELATION ANALYSIS
OF AIR POLLUTION IN THREE KENTUCKY COUNTIES

Air pollution is a crucial factor that affects both the environment and public health.

Various methods are available for assessing air quality and pollution levels, such as re-

gression models, principal component analysis, and factor analysis tools. However, some

of these methods present issues in multicollinearity and the nature of collected data.

It is important to recognize that air pollution data is often uncertain, incomplete, and

contains limited valid data points. Weather conditions and economic activities are also

factors that can affect air pollution. With growing communities in Kentucky (KY), it is

essential to address these factors as the state has unique economic imports and exports.

Air pollution has a significant impact on both morbidity and mortality (Z. Song, Deng,

& Ren, 2020). Therefore, monitoring and regulating air quality is necessary to mitigate

these harmful effects. In this study, Grey Relational Analysis (GRA), Dynamic Grey

Relational Analysis (DGRA), and Canonical Correlation Analysis (CCA) methodolo-

gies are used to analyze economic and meteorological factors and their relationship with

three criteria pollutants: Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), and Ozone

(O3). Data is gathered from 2016-2019 from various sources and localized to 3 counties

in Kentucky.

KEYWORDS: Grey Relational Analysis, Environmental Science, Canonical Correlation

Analysis, Dynamic Grey Relational Analysis, Grey System Theory
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CHAPTER 1

Introduction, Background, Outline, and Data

1.1. Introduction

Recently, the intricate dynamics between environmental degradation, economic

prosperity, and climatic patterns have garnered unprecedented attention. Among the

myriad of environmental concerns, air pollution stands as a significant threat, posing

multifaceted challenges to human health, ecosystem integrity, and socio-economic

stability. Concurrently, the intricate interrelationships among air pollution, economic

variables, weather patterns, and their collective impact on human civilization have

become subjects of scholarly inquiry.

Various methods are available for assessing air quality and pollution levels, such

as regression models, principal component analysis, and factor analysis tools. However,

some of these methods present issues in multicollinearity and the nature of collected

data. It is important to recognize that air pollution data is often uncertain, incomplete

and contains limited valid data points. Weather conditions and economic activities are

also factors that can affect air pollution. With growing communities in Kentucky

(KY), it is essential to address these factors as the state has unique economic imports

and exports. Air pollution has a significant impact on both morbidity and mortality

(Z. Song et al., 2020). Therefore, monitoring and regulating air quality is necessary to

mitigate these harmful effects.

This thesis comprehensively explores the intricate relationship between air

pollution, economic parameters, and weather variables through Grey Relational
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Analysis (GRA), Dynamic Grey Relational Analysis (DGRA), and Canonical

Correlation Analysis (CCA). The rationale behind the selection of GRA, DGRA, and

CCA lies in their adeptness in handling multi-dimensional datasets and discerning

latent relationships within heterogeneous variables. By employing GRA, this study

works to quantify the relative closeness among air pollution levels, economic indicators,

and meteorological parameters, thereby bringing forward the underlying patterns of

association. The adoption of DGRA further enhances this methodology through a

unique addition to the methodology of GRA. Additionally, CCA is a robust

multivariate statistical tool for elucidating the latent correlations between disparate

sets of variables. The use of these tools within this thesis brings a full picture of the

environmental health of three counties in Kentucky, while also providing a focused

critique of the methods themselves. Further, this research contributes to the existing

body of knowledge by offering insights into the differential impacts of various economic

strata and climatic zones on air pollution across the state.

1.2. Background

Numerous studies have explored the impact of environmental factors on global

public health. Not only has hot weather been studied in relation to respiratory health,

but a literature review in this area of public health also reveals air pollution and hot

weather exposure beyond certain thresholds have serious effects on respiratory health,

with the elderly and young children being the most vulnerable groups. Additionally,

there is a general acceptance of global warming increasing health effects of outdoor air

pollution, and resulting in more heat waves (Grigorieva & Lukyanets, 2021).

Temperature has been known as a catalyst for pollutants, and during heatwaves.

Kalisa et al. (2018) found maximum temperature coinciding with the peak of O3 and

PM10, which established that temperature’s association with air pollution does not

2



change according to rural and urban locations although air pollutants increased with

increasing temperatures, particularly during heatwaves. Xu et al. (2021) globally

analyzed the relationship between weather, air pollution, and SARS-CoV-2

(COVID-19) transmission, finding warmer temperatures and moderate outdoor

ultraviolet exposure result in a slight reduction in the transmission of COVID-19. Still,

changes in weather or air pollution alone are not enough to contain the spread of

COVID-19 with other factors having greater effects. In light of recent global health

events, COVID-19 transmissibility and factors affecting this phenomenon have been

studied, specifically finding that temperature has a nonlinear negative relationship

with COVID-19 transmissibility (Irfan, Ikram, Ahmad, Wu, & Hao, 2021).

Meteorological data has also been studied in pollutant relationships. There have been

multiple examples of chemical relationships to pollutants, such as humidity, as it

promotes hygroscopic growth and continual chemical reactions of other pollutants in

the atmosphere. Though this study does not focus on data collected within the

COVID-19 era, it does provide a valuable example of environmental health’s

intersection with public health. A study conducted in Wuhan, China found

“temperature, relative humidity, precipitation, and wind speed are negatively

correlated with [air quality index] AQI, which atmospheric pressure is positively

correlated with AQI for the entire study period” (Song et al., 2020, p.2) . Also

mentioned in their paper is strong multicollinearity among meteorological elements, so

principal components analysis is used to eliminate this. Abdul-Wahab et al. (2005)

used principal component and multiple regression analysis in modeling ground-level

ozone and factors affecting its concentration. It is found that while high temperature

and high solar energy tended to increase the data time ozone concentrations, the

pollutants NO2 and SO2 being emitted to the atmosphere are being depleted .

Abdul-Wahab et al (2005) also mentioned significant amounts of multicollinearity

among pollutant predictors, which makes multiple of their models inappropriate, as
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high levels of multicollinearity in the data can impact the accuracy of the model and

increase variances. Multiple transformations are needed on the models, specifically

logarithmic transformations. Though multiple regression analysis is a widely used

methodology for showing relationships between predictor variables, it can face serious

difficulties when independent variables are correlated with each other (Mcadams,

Crawford, & Hadder, 2000). Additionally, the relationship between economic

indicators and air pollution is noted within the literature in exposure science (Davis,

Laden, Hart, Garshick, & Smith, 2010). Li et al. (2017) found all socio-economic

indicators they considered in their study are related to multiple air pollutants (to some

extent) . A study conducted in Switzerland revealed that economically oriented

parameters correlate with high Ozone levels (Kuebler, Van Den Bergh, & Russell,

2001). Among these and other works of literature, there is evidence supporting the

idea that ”economic and regulatory activities have a significant impact on exposure to

pollution” (Davis et al., 2010, pg. 18). Thus, there is empirical evidence of the effect of

certain economic factors’ impact upon air pollutant levels. These are explored using a

variety of methods, including regression models and grey relational analysis. By

integrating GRA, DGRA, and CCA into the analysis framework, researchers can

overcome the limitations of traditional methods, such as multicollinearity or linear

assumptions, and gain a deeper understanding of the complex interactions shaping air

quality, economic development, and societal well-being.

1.3. Description of Thesis

In this study, Grey Relational Analysis, Dynamic Grey Relational Analysis, and

Canonical Correlation Analysis methodology are used to analyze economic and

meteorological factors and their relationship with three criteria pollutants: Nitrogen

Dioxide (NO2), Sulfur Dioxide (SO2), and Ozone (O3). Data are gathered from

4



2016-2019 from various sources and localized to 3 counties in Kentucky. Weather

variables include average temperature, maximum relative humidity, precipitation,

prevailing wind direction, and average wind speed. economic variables include mining,

logging, and construction; manufacturing; and trade, transportation and utilities.

These are further discussed in Section 1.4.

1.4. Data

1.4.1. Criteria Pollutants, Meteorological, and Economic

Factors

Nitrogen dioxide is part of a group of highly reactive gasses and is used as an

indicator for the larger group of nitrogen oxides in the atmosphere. The most likely

source of this type of pollution is the burning of fuel from cars, trucks, buses, power

plants, and off-road equipment. From a human health perspective, it can irritate

airways and aggravate respiratory diseases. From an environmental perspective, it can

form acid rain and make the air hazy and difficult to see through while also

contributing to nutrient pollution in coastal waters (US EPA, 2016). Multiple

monitoring sites are along the Ohio and Mississippi Rivers bordering Kentucky, and

rivers are also susceptible to nutrient pollution.

Sulfur Dioxide is an indicator for a larger group of gaseous sulfur oxides. The

largest source of SO2 pollution is fossil fuel combustion at power plants and other

industrial facilities. Exposure to high levels of SO2 can affect adults and children who

are sensitive to respiratory issues. High levels of this pollutant can lead to the

“formation of other sulfur oxides and can react with other compounds in the

atmosphere to form small particles, which contribute to Particulate matter pollution”

(Environmental Protection Agency (EPA), 2019). Sulfur Dioxide also contributes to
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acid rain, which puts sensitive ecosystems in danger, and can reduce visibility in areas

of the US, including national parks and wilderness areas.

Ozone pollution, also known as ground-level ozone, is a harmful air pollutant that

can have negative impacts on human health and the environment. Ozone forms when

nitrogen oxides and volatile organic compounds react in sunlight, and can be found in

urban and rural areas. Long-term exposure to ozone can cause respiratory problems

such as asthma, reduce lung function, and even premature death (Environmental

Protection Agency (EPA), 2021a). In addition to its effects on human health, ozone

pollution can also harm crops and other vegetation, reducing their productivity and

negatively impacting ecosystems (NASA, 2022).

Meteorological factors such as temperature, humidity, wind speed and direction,

and precipitation play an important role in the dispersion and transport of air

pollutants in the atmosphere. For example, temperature and solar radiation are

correlated with the formation and concentration of ground-level ozone (Environmental

Protection Agency (EPA), 2021b), while wind speed and direction can determine the

direction and distance that pollutants are transported from their sources. Precipitation

can remove pollutants from the atmosphere through wet deposition, while dry

deposition can occur when particles settle on surfaces due to changes in temperature

and humidity. Understanding how meteorological factors are associated with the

behavior of air pollutants is crucial for predicting and managing air quality and

protecting public health.

The economic factors considered in this study include Mining, Logging and

Construction; Manufacturing; and Trade, Transportation, and Utilities. Including

economic variables in a study of air pollution and meteorological elements serves as a

crucial endeavor for several reasons. Firstly, economic activities often serve as

significant drivers of air pollution, with industries, transportation, and energy
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production contributing substantial emissions of pollutants such as NO2, SO2, and O3.

By incorporating these economic indicators, researchers can discern the extent to

which economic development influences air quality and pollutant levels.

1.4.2. Specific Data Information

Table 1.4.1. Data Collection Locations

Site 5 Site 67 Site 3002

Pollution Daviess County Jefferson County Campbell County

Weather Henderson County Bullitt County Campbell County

Economic Daviess County Jefferson County Campbell County

Figure 1.4.1. Map of Monitoring Sites

Table 1.4.1 describes Data Collection locations for each type of variable. Figure 1

provides a map of site locations. Daily values for each variable are collected during the

summer months (June, July, and August) during 2016-2019, at three site locations in

Kentucky, as defined by the US Environmental Protection Agency (US EPA, 2016).

Sites are selected based on availability and completeness of data for the three months.

In some cases, data from neighboring counties are utilized as some of the EPA

monitoring sites are not included by the KY Mesonet or the US BEA. This is not

anticipated to cause a large issue because of the proximity of each county. Sites use

instruments that continually monitor air pollution levels. The instruments are kept in

temperature-controlled shelters (US EPA, 2016). Pollutant data are obtained from the
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US Environmental Protection Agency monitoring sites (US EPA, 2016). Pollutants are

measured in parts per million (ppm). Because of sampling issues, there are some

missing data for the period we investigated. An executive decision is made to delete

those data from the analysis because of the nature of GRA, DGRA, and CCA. All

weather variables are collected from the KY Mesonet, located at Western Kentucky

University (Mahmood, Schargorodski, Foster, & Quillingan, 2019). All economic data

are collected from the US Bureau of Economic Analysis (BEA) (Bureau of Economic

Accounts (BEA), n.d.). Each variable is measured using all employees of that industry,

in thousands (Bureau of Economic Accounts (BEA), n.d.).

Table 1.4.2 gives an abbreviation guide for use throughout the thesis, and

includes not only weather and economic data, but also a few important abbreviations

for future discussion (i.e., lower the better, higher the better, initial value processing,

and mean value processing).

Table 1.4.2. Abbreviation Guide

AT (F) Average Temperature
MRH (%) Maximum Relative Humidity

P (in) Precipitation
PWD Prevailing Wind Direction

AWS (mph) Average Wind Speed
MLC Mining, Logging and Construction

M Manufacturing
TTU Trade, Transportation and Utilities
LTB Lower the Better
HTB Higher the Better
IVP Initial Value Processing

MVP Mean Value Processing

Tables 1.4.3, 1.4.4, and 1.4.5 present summary statistics for each collected data

set for each site. The summary statistics feature Mean, Standard Deviation, and

quantile information that includes minimum, maximum, and median values, among

others.
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Table 1.4.3. Summary Statistics Site 5

Variable Mean Std. Dev
Quantile

Min 25% 50% 75% Max

NO2 (ppm) 8.0377 4.0038 0 5 7 10 24
SO2 (ppm) 4.4591 6.3088 0 1 2 5 42
O3 (ppm) 0.0453 0.0104 0.014 0.038 0.045 0.05175 0.088
AT (F) 75.7245 4.1623 62 73.5 76.4 78.5 84

MRH (%) 97.5811 3.1107 76.4 96 98.9 100 100
P (in) 0.1315 0.3386 0 0 0 0.0675 2.37

PWD (Degrees) 178.2311 92.7530 0 112.5 202.5 247.5 337.5
AWS (mph) 4.0223 1.7805 0.7 2.8 3.6 5.1 10.6

MLC 2.7629 0.1293 2.5 2.7 2.8 2.9 2.9
M 8.4947 0.3551 7.9 8.5 8.6 8.8 8.9

TTU 10.2796 0.2804 10 10 10.2 10.7 10.7

Table 1.4.4. Summary Statistics Site 67

Variable Mean Std. Dev
Quantile

Min 25% 50% 75% Max

NO2 (ppm) 19.1288 6.9275 4.40 13.58 19.05 24.30 36.00
SO2 (ppm) 2.4490 1.8927 0.20 1.20 1.90 3.10 13.00
O3 (ppm) 0.0500 0.0119 0.02 0.04 0.05 0.06 0.09
AT (F) 75.2212 4.3812 60.70 71.18 76.05 78.30 83.90

MRH (%) 98.9481 2.3942 69.60 98.78 99.50 100.00 100.00
P (in) 0.1562 0.3904 0.00 0.00 0.00 0.08 2.60

PWD (Degrees) 173.9423 80.7063 0.00 135.00 191.25 225.00 337.50
AWS (mph) 3.0372 1.2623 1.10 2.10 2.90 3.70 7.30

MLC 30.1346 0.7912 28.90 29.20 30.40 30.80 31.10
M 82.7603 0.5242 81.90 82.30 82.70 83.20 83.60

TTU 147.5897 2.1909 143.90 145.10 148.90 149.70 150.30

The tables present a comprehensive overview of environmental, economic, and

meteorological conditions across three distinct sites. Notably, the data span multiple

scales, reflecting the varied nature of factors correlated with each site. Furthermore, an

absence of outlying weather events during the data collection period underscores the

reliability and consistency of the dataset. The absence of such anomalies ensures that

any observed patterns or correlations are reflective of typical environmental and

meteorological conditions experienced by the sites.
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Table 1.4.5. Summary Statistics Site 3002

Variable Mean Std. Dev
Quantile

Min 25% 50% 75% Max

NO2 (ppm) 8.2828 4.9422 0 4 7 11.5 24
SO2 (ppm) 1.3440 2.9516 0 0 1 2 42
O3 (ppm) 0.0455 0.0111 0.017 0.037 0.046 0.053 0.075
AT (F) 74.3449 4.5063 59.2 71.65 74.8 77.7 83.4

MRH (%) 92.6475 6.9844 55.8 89.5 93.6 98.3 100
P (in) 0.1819 0.4656 0 0 0 0.1 3.4

PWD (Degrees) 176.8513 86.6420 0 135 2.6 47.1 337.5
AWS (mph) 3.3991 1.0812 1.6 2.6 3.2 4 7.1

MLC 48.6673 1.0859 46.7 47.1 49 49.5 49.6
M 118.0983 2.0849 115.3 115.6 117.3 119.5 121

TTU 215.1117 3.9249 209.1 210.7 214 218.7 219.3

The remaining part of this thesis is separated into chapters by analysis methods.

Each chapter comprises a literature review, delineates the methodologies employed

alongside their respective results, and discusses the outcomes and limitations of each

methodology. The final chapter compares the three methods, the limitations of the

study overall, and recommendations for future work.
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CHAPTER 2

Grey Relational Analysis

2.1. Literature

Natural phenomena observations can present significant challenges for scientists

as air quality and pollution data provide an incomplete perspective in regards to

system variables, and sampling methods can be influenced by various environmental

and economic factors. This concept is present in various systems, including the social,

environmental, economic, and even human anatomical systems (Ng, 1994). Grey

system theory, first proposed by Deng in 1983, aims to bridge the gap between social

science and natural science (Julong, 1988). Grey information is either incomplete or

undetermined, whereas black and white information is complete and lacking

information, respectively. Grey system theory complements existing statistical

methods such as fuzzy logic and rough set theory, and it helps establish a

non-functional model for predicting variable levels and analyzing correlations. The

idea of a ’grey’ system stems from the color grey- black representing a complete lack of

information, white representing complete information. Combined, we have an

incomplete system, called ’grey’. Grey system theory deals with incomplete and

uncertain information about systems, which is relevant to studying air pollution. This

does not imply missing data but rather indicates the conditions of the system in place.

A grey system has four defining characteristics: incomplete information about system

parameters, incomplete structure, incomplete boundaries, and incomplete knowledge of

system behaviors (Julong, 1988). These characteristics necessitate special analytical

methods, such as grey relational analysis. According to Yamaguchi et al. (2015), grey
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relational analysis is one of grey system theory’s most effective mathematical tools. It

is particularly suited for air pollution analysis because it considers the similarities and

differences between sets of data to rank each variable’s impact on the system, resulting

in a grey relational grade.

Applications of grey system theory are widespread and span various fields,

including economics (C.-Y. Huang, Hsu, Chiou, & Chen, 2020), business

(Wiecek-Janka, Mierzwiak, Nowak, Kujawinska, & Majchrzak, 2021), spatial planning

practices (Gerus-Gościewska & Gościewski, 2022), environmental science (Pan, Sun, &

Wang, 2011), agriculture, medicine, history, geography, industry, traffic, sports, and

biological protection and water quality (J. Song, Guang, Li, & Xiang, 2016). Though

many studies used principal components and multiple regression analysis (among other

methods) to study this relationship, it is noted in the literature that there is a need for

a method that considers the nature of data. Due to the influence of various

environmental factors on air quality indicators, and the variability of primary air

pollutants across different regions, there is a growing emphasis on examining the

impact of pollutants on air quality from diverse viewpoints (Wang, Chen, Xie, & Wu,

2021). Grey relational analysis is a new approach to factor analysis and has been used

in multiple different areas, specifically pollutants and air quality. For example, Wang

et al. (2021) researched influence factors of air quality in the host area of the Olympic

Games and found the three factors most closely related to the Beijing Air Quality

Index are population, energy consumption, and motor vehicles. Pan used grey

relational analysis to forecast city air quality and ran an impact factors analysis of

various pollutants. They found industrial pollution and energy consumption had a

great influence on pollutant concentrations (Pan et al., 2011). Zeydan and Pekkaya

(2021) used grey relational analysis to study air quality monitoring stations and found

air quality of stations located near industrial zones and thermal power plants is poorer

than other monitoring sites. Zhan et al. (2018) looked at the correlation between air

12



pollutant indicators and economic factors in Hong Kong. Ni (2013) found the main

factors associated with air quality are industrial SO2 emissions, public green space per

capita, and total urban population. Li et al. (2018) looked at influence factors of air

quality indexes in Beijing and other places for 5 years (2013-2017) and found rainfall,

air temperature, and wind speed are associated with air quality index. Relative

humidity and air pressure vary from city to city (Li, H & Wang, X., 2018).

2.2. Methodology

This section encompasses several key components, including an introduction to

standardization and normalization techniques employed in data preprocessing. This

discussion emphasizes the rationale behind these techniques and their application to

ensure uniformity and comparability of the data across variables. Additionally, the

section provides a detailed outline of the specific methodology utilized for Grey

Relational Analysis.

2.2.1. Standardization and Normalization

Normalization and standardization are critical parts of data preparation,

particularly in the context of GRA, where variables may exhibit diverse scales and

units. This is further seen in Tables 1.4.3, 1.4.4, and 1.4.5 in Section 1.4. This process

aims to standardize data to a common scale, facilitating meaningful comparisons and

interpretations across variables. Within GRA, normalization establishes that each

attribute contributes proportionally to the analysis, regardless of its initial magnitude.

It involves transforming data values to conform to specific ranges, with considerations

for variables where higher values indicate desirable outcomes, lower values denote

preferable conditions, and moderate values are optimal.
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2.2.1.1. Normalization and Standardization

Let yk be the normalized value of the data point x. Let j = 1,2...n, and

k = 0,1, ...,m, and x∗ is the moderate value (Javed, Gunasekaran, & Mahmoudi, 2022).

When the data is higher the better, indicating higher values provide desirable

outcomes, the following is used:

Type ’Higher the Better’

yk(j) =
xk(j) −minj xk(j)

maxj xk(j) −minj xk(j)

In the context of this study, this normalization method is used for some

meteorological variables because of how they interact with certain pollutants. See

section 1.4.1 for more information.

When the data is lower the better, indicating lower values provide desirable

outcomes, the following is used:

Type ’Lower the Better’

yk(j) =
maxj xk(j) − xk(j)

maxj xk(j) −minj xk(j)

In this study, the pollution data is normalized using this method, as pollution

would ideally be as low as possible.

Type ’Moderate the Better’

yk(j) = 1 − ∣xk(j) − x∗∣
maxj xk(j) −minj xk(j)

(Javed et al., 2022)
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This type of normalization is used when there is a pre-determined value the data

should be at (Javed et al., 2022). This does not apply to any of our data, so it is not

used.

Initial Value Processing (IVP)

According to Ng (1994) pg. 5, ”the first value of each sequence to divide each

succeeding value of the corresponding sequence” describes this pre-processing system.

yk(j) =
yk(j)
yk(1)

Mean Value Processing (MVP)

According to Ng (1994) pg. 5 , mean value processing works by finding the mean

values of each primitive sequence, then those are used to divide each value of the

corresponding sequences.

yk(j) =
yk(j)
yavg

Within this study, both IVP and MVP are used in separate analyses. This is to

observe differences between grey relational orderings, if any. Table 2.2.1 represents the

choices for normalization and standardization of variables by pollutant used within

both GRA and DGRA analyses.

Table 2.2.1. Normalization and Standardization of Variables by Pollu-
tant for GRA and DGRA

Variable NO2 SO2 O3

Pollutant LTB LTB LTB
AT (F) LTB LTB LTB

MRH (%) LTB LTB HTB
P (in) LTB LTB HTB
PWD IVP/MVP IVP/MVP IVP/MVP

AWS (mph) IVP/MVP IVP/MVP IVP/MVP
MLC IVP/MVP IVP/MVP IVP/MVP

M IVP/MVP IVP/MVP IVP/MVP
TTU IVP/MVP IVP/MVP IVP/MVP
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It is important to note that in various fields, including industry settings and

environmental studies, the utilization of different standardization and normalization

methods often hinges on the specific nature of the data and the objectives of the

analysis. In industry settings, where data often adhere to well-defined standards, the

choice of standardization or normalization method may be straightforward, guided by

established protocols or industry best practices. For example, studies involving

industry-related data, J.T. Huang & Liao (2003), Kuo, Yang & Huang (2008 and

Muqeem et al. (2017) use higher the better and lower the better normalization

methods when conducting GRA for each of their studies. However, in environmental

data analysis, the literature presents a different normalization and standardization

technique. For example, Shexia, Yaoqui, & Zhu (2018) used Initial Value Processing

for water quality data when conducting GRA. Pan et al. (2011) made no mention of a

normalization method used when conducting GRA with air quality index (AQI) data

and economic data, and Tao (2015) used IVP or MVP for their study of both AQI

and economic data. For studies using raw pollution data (as is used in this study),

most often, the higher the better and lower the better techniques are used (Zeydan &

Pekkaya, 2021). A study using exclusively economic data (C.-Y. Huang et al., 2020)

used IVP and MVP techniques, and a general study of GRA (Ng, 1994) used IVP and

MVP as well. Consequently, the selection of standardization or normalization

techniques in environmental and economic studies often necessitates careful

consideration of the characteristics of the data, the underlying assumptions of the

analytical methods, and the research objectives. Thus, while different standardization

and normalization methods may be employed across different contexts, in

environmental data analysis, the choice seems to be driven by the unique complexities

and nuances inherent in the data itself. That said, the choices in standardization and

normalization made for this data are informed by the literature mentioned above and

are outlined in Table 2.2.1. In all cases, pollutants are normalized as lower the better,
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while economic variables and some weather variables are normalized using either IVP

or MVP. There is literature supporting the decision to characterize maximum relative

humidity, average temperature, and precipitation to be normalized with higher and

lower the better, from the perspective of wanting the pollutant’s level to be lowered.

For example, precipitation can remove pollutants from the atmosphere through wet

deposition, while dry deposition can occur when particles settle on surfaces due to

changes in temperature and humidity. Additionally, temperature and solar radiation

can influence the formation and concentration of ground-level ozone (Environmental

Protection Agency (EPA), 2021b). In choosing normalization and standardized

methods for this study, because there is no consistency among normalization and

standardization choices within the literature, decisions were made based on what the

literature specified depending on the specific pollutant and type of factor being

investigated. Palczewski & Salabun (2019) note that within Multi-criteria decision

analysis, though normalization is required, the normalization choices do have an

impact on final rankings, which can provide issues in critical areas that use Grey

Relational Analysis, leading to incorrect results. To further investigate this, this study

features both IVP and MVP results, along with the normalization methods presented

in Table 2.2.1.

2.2.2. Grey Relational Analysis Methodology; Deng’s Model of

Grey Relational Analysis

Let us denote

X0(k) = (x0(1), x0(2), ..., x0(n)),

Xi(k) = (xi(1), xi(2), ..., xi(n)),

where k = 1,2,3..., n, i = 1,2,3, ...m, and ξ ∈ (0,1). We can define
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α((x0(k), xi(k))) =
mini mink ∣x0(k) − xi(k)∣ + ξ maxi maxk ∣x0(k) − xi(k)∣

∣x0(k) − xi(k)∣ + ξ maxi maxk ∣x0(k) − xi(k)∣
(2.1)

and

γ(X0,Xi) =
1

n

n

∑
k=1

α((x0(k), xi(k))) (2.2)

X0 is the reference sequence and Xi is the comparison sequence. In this study,

the reference sequence is each pollutant level sequence, while the comparison sequence

is each other variable. Now, α is the grey relational coefficient of each iteration of the

comparison sequences, and γ(X0,Xi) is the grey relational degree between X0 and Xi,

which reflects the degree of closeness between the two comparing sequences. ξ ∈ (0,1)

is the distinguishing coefficient, chosen to be .5 as indicated by literature. The purpose

of the distinguishing coefficient is to weaken the effect of maxi maxk ∣x0(k) − xi(k)∣

when it gets too big, which enlarges the difference significance of the relational

coefficient (Ng, 1994). The closer the value of the grey relational degree (γ) is to 1 the

higher the relational grade of the reference sequence; otherwise, it is lower

(C.-Y. Huang et al., 2020). Once each grade is obtained, they are ordered from highest

to lowest and called a grey relational order which indicates the most highly correlated

variables in each set. This study utilizes Excel to carry out these computations.

2.3. Results

In this section, we present the results of our analysis focusing on air quality

indicators at Site 67. For a full representation of the results, see Section 6.1. Given the

scope of our study and to conserve space, we have chosen to concentrate solely on this

site while acknowledging the broader dataset available in the discussion section. Our

analysis encompassed both IVP and MVP for each pollutant examined.
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Table 2.3.1. Site 67 NO2 IVP/MVP GRA Results

Site 67 NO2

GRG γ with IVP GRG γ with MVP RANK

AT (F) 0.8039 AT (F) 0.8039 1

P (in) 0.7493 P (in) 0.7493 2

AWS (mph) 0.7389 AWS (mph) 0.7429 3

PWD 0.7384 MLC 0.7340 4

M 0.7319 TTU 0.7338 5

TTU 0.7228 M 0.7338 6

MRH (%) 0.7164 MRH (%) 0.7164 7

MLC 0.7159 PWD 0.6947 8

Table 2.3.1 reflects Site 67 NO2 results. Initial value processing reveals average

temperature (.8039), precipitation (.7493), and average wind speed (.7389) are the

most highly correlated factors of NO2 at Site 67. The least correlated factors are

maximum relative humidity (.7164) and mining, logging and construction (.7159).

Among economic variables, manufacturing (.7319) is the most correlated factor. Mean

value processing reveals average temperature (.8039), precipitation (.7493), and

average wind speed (.7429) are the most correlated factors of NO2 at Site 67. The least

correlated factors are maximum relative humidity (.7163) and mining, logging, and

construction (.7159).

Table 2.3.2 reflects SO2 results. Initial value processing reveals precipitation

(.8836), manufacturing (.8787), and trade, transportation and utilities (.8665) are the

most correlated factors of SO2 at site 67. The least correlated factors are average

temperature (.7388) and maximum relative humidity (.6207). Among weather

variables, precipitation is the most correlated factor, while maximum relative humidity

(.6207) is the least correlated. Among economic variables, manufacturing (.8835) is the

most correlated factor. Mean value processing reveals precipitation (.8836), trade,

transportation and utilities (.8814), and manufacturing (.8809) are the most correlated
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Table 2.3.2. Site 67 SO2 IVP/MVP GRA Results

Site 67 SO2

GRG γ with IVP GRG γ with MVP RANK

P (in) 0.8836 P (in) 0.8836 1

M 0.8787 TTU 0.8814 2

TTU 0.8665 M 0.8813 3

MLC 0.8572 MLC 0.8809 4

AWS (mph) 0.8020 AWS (mph) 0.8042 5

PWD 0.7912 PWD 0.7490 6

AT (F) 0.7388 AT (F) 0.7388 7

MRH (%) 0.6207 MRH (%) 0.6207 8

factors of SO2 at site 67. The least correlated factors are average temperature (.7388)

and maximum relative humidity (.6207). Among economic variables, trade,

transportation and utilities (.8814) is the most correlated factor.

Table 2.3.3. Site 67 O3 IVP/MVP GRA Results

Site 67 O3

GRG γ with IVP GRG γ with MVP RANK

AT (F) 0.8753 AT (F) 0.8753 1

PWD 0.7977 AWS (mph) 0.7985 2

MRH (%) 0.7968 MRH (%) 0.7968 3

AWS (mph) 0.7952 MLC 0.7916 4

M 0.7899 TTU 0.7915 5

P (in) 0.7857 M 0.7914 6

TTU 0.7826 P (in) 0.7857 7

MLC 0.7769 PWD 0.7600 8

Table 2.3.3 reflects O3 results. Initial value processing reveals average

temperature (.8753), prevailing wind direction (.7977), and maximum relative

humidity (.7967) are the most correlated factors of O3 at Site 67. The least correlated
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factors are trade, transportation, and utilities (.7826) and mining, logging, and

construction (.7769). Among economic variables, manufacturing (.7899) is the most

correlated factor. Mean value processing reveals that average temperature (.8753),

average wind speed (.7985), and maximum relative humidity (.7967) are the most

correlated factors of O3 at Site 67. The least correlated factors are precipitation

(.7857) and prevailing wind direction (.7600). Among economic variables, mining,

logging and construction (.7916) is the most correlated factor.

For O3, both analyses highlight the significance of average temperature, average

wind speed, and maximum relative humidity, with economic factors such as mining,

logging, and construction also playing a notable role. Similarly, for SO2, precipitation

emerges as a consistently correlated factor in both IVP and MVP, alongside economic

variables like trade, transportation, and utilities, as well as manufacturing. On the

other hand, NO2 results indicate the importance of average temperature, precipitation,

and average wind speed, with manufacturing standing out as a key economic factor.

2.4. Discussion

In the discussion section, we comprehensively examine the findings from all sites,

providing a thorough analysis of the factors correlated with air quality across different

locations and discussing the method itself. While Site 67 is the sole focus of the results

section for the sake of brevity, we discuss results from multiple sites.

Before discussing interpretations of rankings among each site and pollutant, it is

important to discuss standardization methods and how those impact grey relational

ordering. When comparing standardization methods, almost all rankings widely differ.

Rankings are different among both weather and economic variables, as well as among

variables of their kind (i.e., among just weather variables and just economic variables).

In general, Site 5 exhibits the poorest performance in terms of disordered rankings. Site
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67 and Site 3002 are less severe. Overall, for these sites, these rankings are consistent.

Rankings are almost always the same among the individual groups of variables (for

example, just weather and just economics) while among both types of variables, in

some cases there is little variation in ordering, while in others there is much variation.

These results indicate that grey relational analysis is sensitive to preprocessing of

data. Ideally, when conducting this analysis, the research team would opt for a single

preprocessing method, and based on the results obtained, that method would prove to

be adequate. MVP provides (generally) higher grey relational grades overall, and in

some cases for Sites 67 and 3002, grades are the same. Additionally, GRA results in

very similar grey relational grades among pollutants and standardization methods at

each site. This may be because of the similarities between the normalization methods

used and the similarity of the data used for each site, given the only levels that are

altered in each round of computation are the pollutants themselves. Otherwise, the

normalization methods only vary among NO2 and SO2 versus O3 because Ozone

interacts with some weather variables differently than other pollutants, so

normalization and standardization are altered to reflect this. Even so, results indicate

that GRA is still sensitive to the preprocessing of data.

For both IVP and MVP, results across Sites 67 and 3002 for nitrogen dioxide

levels indicate the top three most correlated factors to be weather variables.

Specifically, Site 5 has the opposite result- the top variables are primarily economic.

Site 67 features consistently higher grey relational grades than the other two sites.

Rankings are also different for Sites 67 and 3002 but are overall consistent among both

standardization methods. While there is not a clear first ranking factor across all sites

for NO2, this could be due to location. Each site features different economic outputs

and meteorological features.
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For both IVP and MVP, results across all sites for sulfur dioxide indicate the top

three most correlated factors to be economic variables or precipitation, and the

dominating factor in two of three sites is manufacturing, followed by trade and

transportation (despite IVP and MVP differences). Orderings are much more

consistent with the results of this pollutant. It is also clear which factors are not as

highly correlated with SO2 levels; average temperature and maximum relative

humidity consistently rank lowest. Because rankings resulting from GRA methodology

are very similar among sites, we can conclude there is a clear conclusion for which

factors have the most association with sulfur dioxide levels. In this case,

manufacturing is the most correlated factor of SO2 across all sites.

For IVP and MVP, results across all sites for Ozone levels indicate that weather

variables are the top three most correlated factors. Grey relational grades are much

lower at Site 67 than at Sites 5 and 3002. Ozone is the only pollutant that has

consistent rankings among each site and standardization method, but rankings vary

slightly between each site. This leads to the conclusion that Ozone is influenced

primarily by weather variables, but those economic variables’ rankings differ based on

site location. The most correlated factors among weather variables are consistently

average temperature and maximum relative humidity, which is consistent with the

literature, though they do not rank higher than economic factors.

This discussion provides a comprehensive examination of findings from all sites.

While Site 67 is the exclusive focus of the results section for brevity, results from

multiple sites are discussed. When interpreting grey relational rankings,

standardization methods and their impacts on grey relational ordering are important

to consider. A notable disparity in rankings is observed across different standardization

methods, with Site 5 demonstrating the most significant discrepancies. Moving

forward, it is essential to acknowledge that these results suggest that grey relational

analysis is sensitive to data preprocessing. Ideally, a singular preprocessing method

23



would be chosen to ensure consistency in the analysis. Furthermore, the transition to

discussing limitations is warranted, as the sensitivity of grey relational analysis to

preprocessing methods may introduce inherent biases or limitations in the

interpretation of results.

2.5. Limitations

The Grey Relational Analysis methodology presents a drawback due to the

necessity for data preprocessing, as highlighted in the literature. When discussing the

nature of GRA and pollutant type, J. T. Huang & Liao (2003, pg. 1711) say

“When the range of the sequence is too large or the standard value is too

enormous, it will cause the influence of some factors to be neglected. In addition, in

the sequence, if the factors’ goals and directions are different, the relational analysis

might also produce incorrect results. Therefore, preprocessing of all the data is

necessary.” The language used in this quote indicates the specific criteria for

determining the magnitude of data ranges and factor goals remain ambiguous. While

preprocessing is deemed necessary, there is a lack of consensus on which normalization

processes to employ. Unlike in industry settings, where standardization or

normalization methods are straightforwardly chosen based on established protocols and

uniform distributions, the choice in environmental studies lacks convention, leading to

potential variability in results and interpretations. Additionally, Javed et al., (2022)

indicate that within the field of multi-criterion decision-making, it is ”not unusual to

obtain different rankings using different normalization techniques” (pg. 6). This is

further expanded upon within Chapters 3 and 5. Additionally, the distinguishing

coefficient ξ is blindly chosen to be .5, with little to no contextual support for this

decision. This proves to be an important aspect in future analysis, specifically when

looking at Dynamic Grey Relational Analysis methodology and results.
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2.6. Conclusion

In conclusion, the findings from our analysis (using both IVP and MVP), shed

light on the complex dynamics associated with air quality across different sites in

Kentucky. The examination of Site 67, in particular, reveals insights into the significant

factors affecting pollutant levels, with weather variables often playing a prominent role.

However, economic factors also emerge as correlated, albeit with variations across sites.

The sensitivity of grey relational analysis to preprocessing methods underscores the

importance of careful data preparation to ensure reliable results. While MVP generally

yields higher grey relational grades, both IVP and MVP highlight consistent trends in

pollutant influences, albeit with variations in rankings among sites. Notably, for

nitrogen dioxide, weather variables predominate as most associated with NO2 levels

across Sites 67 and 3002, contrasting with Site 5, where economic factors hold greater

sway. Conversely, sulfur dioxide levels are predominantly influenced by economic

variables or precipitation across all sites, with manufacturing consistently emerging as

the most correlated factor. Finally, Ozone levels demonstrate a notable consistency in

rankings among sites and standardization methods, indicating a primary association

with weather variables, particularly average temperature and maximum relative

humidity. These findings underscore the complex interplay of environmental and

economic factors in shaping air quality, highlighting the need for tailored strategies to

mitigate pollution and safeguard public health. However, it is crucial to acknowledge

the limitations inherent in our methodology, including the potential biases introduced

by data preprocessing and the constraints of our analysis focusing on a select number

of sites. Future research endeavors should strive to address these limitations.
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CHAPTER 3

Dynamic Grey Relational Analysis

3.1. Literature

Scientists face many challenges when observing natural phenomena, particularly

in assessing air quality and pollution data, which may be incomplete due to various

environmental and economic factors associated with sampling methods. Grey system

theory, introduced by Deng in 1983, aims to bridge the gap between social science and

natural science by addressing incomplete or undetermined ’grey’ information,

contrasting with complete ’black’ and lacking ’white’ information. This theory

complements existing statistical methods like fuzzy logic and rough set theory,

providing a non-functional model for predicting variable levels and analyzing

correlations. Applications of grey system theory are extensive, spanning fields such as

economics, business, spatial planning, environmental science, agriculture, medicine,

history, geography, industry, traffic, sports, and biological protection, as well as water

quality. Despite the use of principal components and multiple regression analysis in

studying air quality relationships, there is a recognized need for methods that account

for the nature of the data. Grey relational analysis emerges as a novel approach,

applied across various areas and pollutants to forecast air quality and investigate

associated with factors. Studies employing this method reveal insights into the impact

of industrial pollution, energy consumption, population density, motor vehicles,

economic factors, and environmental conditions on air quality indices in different

regions. An area of grey system theory and a derivative of GRA, called Dynamic Grey

Relational Analysis (DGRA) can also be used for this study to assess air pollution
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data, rather than traditional methods such as regression or principal components

analysis, which may have issues in handling incomplete data, as indicated by previous

literature. As discussed in Section 2.5, GRA has shortcomings such as the value of its

distinguishing coefficient; it is consistently taken to be .5 (Ouali, 2022). ”Also, why

after almost four decades, still no one identified this inconsistency could be attributed

to the fact that the scholars mostly assume ξ = 0.5” (Javed et al. 2022, pg. 5) .

Recent literature has argued a dynamic method is needed to compare the effects of

sequential data movement (C.-Y. Huang et al., 2020). DGRA dynamically changes the

distinguishing coefficient ξ and calculates it optimally (Javed et al., 2022). This

methodology is thought to be more precise than typical GRA models (Bai, Jin, Wang,

Wang, & Xu, 2020). As noted by Huang et al. (2020) pg. 3, “The literature related to

grey relation has employed static analysis in data studies, without considering leading

or lagging time” . Thus, DGRA can be used to compare the effects of sequential data

movement (C.-Y. Huang et al., 2020). DGRA is an innovative take on grey relational

analysis and addresses issues with Deng’s model. Some studies have noted

discrepancies between traditional GRA and DGRA in final grades (C.-Y. Huang et al.,

2020). Ongoing research aims to determine which yields the most accurate results,

with this study contributing to the discussion. There is limited literature about the

reliability of DGRA, as DGRA is a new development in the field of Multi-Criteria

Decision Making (MCDM) and Grey System Theory.

3.2. Methodology

This section encompasses several key components, including standardization and

normalization techniques employed in data preprocessing. This discussion emphasizes

the rationale behind these techniques and their application to ensure uniformity and
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comparability of the data across variables. Additionally, the section provides a detailed

outline of the specific methodology utilized for Dynamic Grey Relational Analysis.

3.2.1. Standardization and Normalization

Normalization and standardization are a critical part of data preparation,

particularly in the context of Dynamic Grey Relational Analysis, where variables may

exhibit diverse scales and units. This process aims to standardize data to a common

scale, facilitating meaningful comparisons and interpretations across variables. Within

DGRA, normalization ensures that each attribute contributes proportionally to the

analysis, regardless of its initial magnitude. It involves transforming data values to

conform to specific ranges, with considerations for variables where higher values

indicate desirable outcomes, lower values denote preferable conditions, and moderate

values are optimal. Normalization and standardization processes are the same as those

presented in Section 2.2. See Table 2.2.1 for normalization and standardization choices.

Dynamic Grey Relational Analysis offers a refined approach to address the

challenges present in Grey Relational Analysis, particularly concerning standardization

and normalization procedures. Unlike GRA, where normalization is often a mandatory

step to ensure comparability among variables with differing scales, DGRA presents a

flexible modeling framework wherein normalization is not obligatory (Ouali, 2022;

Javed et al., 2022). Javed et al. (2022) give the option not to normalize data using

higher the better, lower the better, and moderate the better (what is referred to as the

Ideal Alternative Function), but only when the research team ”lack consensus on the

choice of normalization technique.” Briefly mentioned priorly, normalization of data is

needed when the removal of the effects of different measurement units needs to be

reduced (Bai et al., 2020). In this project, normalization is needed because of the

vastly different measurement types. Interestingly, (C.-Y. Huang et al., 2020) suggests
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the use of various standardization methods, though this study only examines economic

variables when performing DGRA. (Ouali, 2022) does not mention which

normalization methods are used for their industry-type data when performing DGRA.

Nonetheless, there is no consistency among normalization and standardization choices

within the literature, and the choices made for these projects are dependent upon the

specific pollutant. Palczerski & Salabun (2019) note that within Multi-Criteria

Decision Analysis, though normalization is required, the normalization choices do have

an impact on final rankings, which can provide issues in critical areas that use Grey

Relational Analysis, leading to incorrect results.

Thus, because of the ambiguity in normalization and standardization procedures,

to stay consistent in pre-processing techniques, the choices made for DGRA

methodology and these data are informed by the literature mentioned in Section 2.2 as

outlined in Table 2.2.1, and are the same as GRA choices.

3.2.2. Dynamic Grey Relational Analysis Methodology

First, we establish a reference sequence and a comparative sequence

X0(k) = x0(1), x0(2), ..., x0(n),

Xi(k) = xi(1), xi(2), ..., xi(n),

where k = 1,2,3..., n, i = 1,2,3, ...m, X0(k) represents a reference sequence and Xi(k) is

a comparative sequence (Javed et al., 2022). After normalization, the Dynamic Grey

Relational Grade is

γ0k =
1

n

n

∑
j=1

α0k(j), (3.1)
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where α0k (Grey Relational Coefficient) is

α0k(j) =
∆min + ξ(j)0k∆max

∣∆0k(j)∣ + ξ(j)0k∆max

, ξ(j) ∈ (0,1], k = 1,2, ...,m, (3.2)

where

∣∆0k(j)∣ = ∣x0(j) − xk(j)∣ (3.3)

∆min =min
k

min
j
∣x0(j) − xk(j)∣ (3.4)

∆max =max
k

max
j
∣x0(j) − xk(j)∣ (3.5)

ξ(j) = {ξ(1), ξ(2)...ξ(n)}, ξ(j) ∈ (0,1]. (3.6)

ϕ(j) =
1
m ∑

m
k=1 ∣x0(j) − xk(j)∣

∆max

. (3.7)

ξ(j) is the vector of dynamic distinguishing coefficients, not a fixed value as in the

GRA methodology. To determine these, we estimate an h-multiplier. h ∈ [1,2] is a

unique continuous multiplier that defines the relative position of each coefficient in the

set α(j). To determine the dynamic distinguishing coefficients, a one-variable linear

programming method of maximizing (Javed et al., 2022) is used:

Maximize ξ(j) = h(ϕ(1) + ϕ(2) + ... + ϕ(n)) s.t. h ∈ [1,2] and hϕ(j) ≤ 1. (3.8)

Furthermore, to properly calculate the distinguishing coefficients, the weight of each

criterion ω must be calculated. Javed et. al (2022) note the use of the Ordinal Priority

Approach (OPA) to Multi-criterion decision making to calculate the weights of the

criteria based on preference data (Ataei, Mahmoudi, Feylizadeh, & Li, 2020), though

because there is no preference for rankings of each pollutant, the mathematics behind

this simplifies to the weight being 1
n , where n is the number of variables included in the

study, as indicated within the methodology section. Typically, multiple experts would

use data to develop a ranking as to which criteria are most and least important, then

estimate those scores and input that information into computer software to calculate
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each weight. This coupled with data type classification in the normalization process

allows for dynamic calculation of ξ, though again, in this study, weights are calculated

as 1
n .

All computations for this calculation are conducted in Matlab using Javed et al.

(2022) Matlab code developed for replication of their study. No changes are made to

the code, though we test multiple algorithmic methods for the linear programming

method (linprog) used with Matlab, and results do not differ when utilizing different

algorithms, such as the Dual-Simplex Algorithm, the Interior-Point-Legacy Algorithm,

and the Interior-Point Algorithm. The global grey relational variators are hϕ(j). The

calculation method is carried out using the ξ(j) from Matlab and Excel for the rest of

the computation. γ is then calculated. Now, α is the grey relational coefficient of the

comparison sequences which reflects the degree of closeness between the two comparing

sequences. The closer the value of the grey relational grade is to 1 the higher the

relational grade of the reference sequence; otherwise, it is lower (C.-Y. Huang et al.,

2020). Once each grade is obtained, they are ordered from highest to lowest and called

a grey relational order which indicates the most correlated factors affecting various

variables.

3.3. Results

The results section presents findings regarding both Initial Value Processing and

Mean Value Processing for Site 67 across various pollutants. Due to space constraints,

only results for Site 67 are detailed in this section, with comprehensive data for other

sites available in the appendix. Analysis of Site 67 reveals notable patterns and trends

for each pollutant examined.

Table 3.3.1 reflects NO2 results. Initial value processing reveals average

temperature (γ=.8857, ξ=.9965), maximum relative humidity (γ=.8301, ξ=1), and

31



Table 3.3.1. Site 67 NO2 IVP/MVP DGRA Results

Site 67 NO2

ξ GRG (γ) with IVP ξ GRG (γ) with MVP RANK

0.9965 AT (F) 0.8857 0.9965 AT (F) 0.8857 1

1.0000 MRH (%) 0.8301 1.0000 MRH (%) 0.8301 2

0.4536 AWS (mph) 0.7218 0.4484 AWS (mph) 0.7239 3

0.2594 PWD 0.6119 0.3017 PWD 0.5911 4

0.0184 P (in) 0.1362 0.0184 P (in) 0.1362 5

0.0176 MLC 0.0995 0.0169 MLC 0.1113 6

0.0129 TTU 0.0805 0.0126 TTU 0.0871 7

0.0101 M 0.0719 0.0100 M 0.0733 8

average wind speed (γ=.7218, ξ=.4536), are the most correlated factors of NO2 at Site

67. The least correlated factors are trade, transportation, and utilities (γ= .0805,

ξ=.0129), and manufacturing (γ= .0719, ξ=.0101). Among economic variables, mining,

logging, and transportation is the most correlated. Standardization methods present

the same orderings with very similar grey relational grades. Mean value processing

reveals average temperature (γ=.8857, ξ=.9965), maximum relative humidity

(γ=.8301, ξ=1), and average wind speed (γ=.7239, ξ=.4484) are the most correlated

factors of NO2 at Site 67. The least correlated factors are trade, transportation and

utilities (γ= .0871, ξ=.0126), and manufacturing (γ= .0733, ξ=.0100). Among

economic variables, mining, logging and transportation is the most correlated.

Table 3.3.2 reflects SO2 results. Initial value processing reveals average

temperature (γ=.8451, ξ=.9965), maximum relative humidity (γ=.7638, ξ=1), and

average wind speed (γ=.7885, ξ=.4484), are the most correlated factors of NO2 at Site

67. The least correlated factors are trade, transportation, and utilities (γ= .1998,

ξ=.0129), and manufacturing (γ= .1994, ξ=.0101). Among economic variables, mining,

logging, and transportation are the most correlated. Standardization methods present

the same orderings with very similar grey relational grades. Mean value processing
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Table 3.3.2. Site 67 SO2 IVP/MVP DGRA Results

Site 67 SO2

ξ GRG (γ) with IVP ξ GRG (γ) with MVP RANK

0.9965 AT (F) 0.8451 0.9965 AT (F) 0.8451 1

0.4536 AWS (mph) 0.7879 0.4484 AWS (mph) 0.7885 2

1.0000 MRH (%) 0.7638 1.0000 MRH (%) 0.7638 3

0.2594 PWD 0.6778 0.3017 PWD 0.6525 4

0.0184 P (in) 0.3173 0.0184 P (in) 0.3173 5

0.0176 MLC 0.2321 0.0169 MLC 0.2995 6

0.0129 TTU 0.1998 0.0126 TTU 0.2486 7

0.0101 M 0.1994 0.0100 M 0.2070 8

reveals average temperature (γ=.8451, ξ=.9965), average wind speed (γ=.7884,

ξ=.4484), and maximum relative humidity (γ=.7638, ξ=1) are the most correlated

factors of NO2 at Site 67. The least correlated factors are trade, transportation, and

utilities (γ= .2485, ξ=.0126) and manufacturing (γ= .2070, ξ=.01). Among economic

variables, mining, logging, and transportation is the most correlated.

Table 3.3.3. Site 67 O3 IVP/MVP DGRA Results

Site 67 O3

ξ GRG (γ) with IVP ξ GRG (γ) with MVP RANK

1.0000 AT (F) 0.9023 1.0000 AT (F) 0.9023 1

0.4552 AWS (mph) 0.7132 0.4500 AWS (mph) 0.7154 2

0.4083 MRH (%) 0.6963 0.4083 MRH (%) 0.6963 3

0.2968 P (in) 0.6026 0.2968 P (in) 0.6026 4

0.2603 PWD 0.6015 0.3027 PWD 0.5808 5

0.0177 MLC 0.0869 0.0170 MLC 0.0930 6

0.0130 TTU 0.0681 0.0127 TTU 0.0720 7

0.0101 M 0.0580 0.0101 M 0.0584 8
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Table 3.3.3 reflects O3 results. Initial value processing reveals average

temperature (γ=.9023, ξ=1), maximum relative humidity (γ=.6963, ξ=.4083), and

average wind speed (γ=.7132, ξ=.4552) are the most correlated factors of NO2 at Site

67. The least correlated factors are trade, transportation, and utilities (γ= .0681,

ξ=.0130) and manufacturing (γ= .5800, ξ=.0101). Among economic variables, mining,

logging, and transportation is the most correlated. Standardization methods result in

the same orderings with the same grey relational grades. Mean value processing reveals

average temperature (γ=.9023, ξ=1), maximum relative humidity (γ=.6963, ξ=.4083),

and average wind speed (γ=.7154, ξ=.4500), are the most correlated factors of NO2 at

Site 67. The least correlated factors are trade, transportation, and utilities (γ= .0720,

ξ=.0127), manufacturing (γ= .0584, ξ=.0101). Among economic variables, mining,

logging, and transportation is the most correlated.

In summary, the results from both MVP and IVP provide insights into the

factors associated with air quality at Site 67. For ozone, average temperature,

maximum relative humidity, and average wind speed emerge as the most correlated

factors, with economic variables such as mining, logging, and construction with

significant association. Notably, standardization methods yield consistent orderings

and grey relational grades across both MVP and IVP analyses for O3. Similarly, for

sulfur dioxide, weather variables like average temperature and average wind speed are

correlated, along with economic factors such as mining, logging, and construction.

Standardization methods again produce uniform orderings and grey relational grades

for SO2. Finally, nitrogen dioxide levels are predominantly influenced by weather

variables across both MVP and IVP analyses, with economic variables also playing a

role. The consistency in orderings and grey relational grades across standardization

methods emphasizes the reliability of the findings. Moving forward, these results

provide a foundation for discussing the implications of the identified factors on air

quality and informing future research directions.
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3.4. Discussion

In the discussion section, we comprehensively examine the findings from all sites,

providing a thorough analysis of the factors associated with air quality across different

locations and discussing the method itself. While Site 67 is the sole focus of the results

section for the sake of brevity, we now discuss results from multiple sites.

Before discussing interpretations of rankings among each site and pollutant, it is

important to discuss standardization methods and how those impact dynamic grey

relational ordering. Overall, grey relational orderings resulting from DGRA are

consistent among IVP and MVP, while Site 5 has the most variation in grey relational

orderings across all pollutants. Sites 67 and 3002 present the same orderings with very

similar grey relational grades.

Despite the variation in ordering of Site 5, the dynamic grey relational analysis

seems to be only very slightly sensitive to the preprocessing of data, specifically in the

grey relational grades themselves. IVP processing generally provides higher grey

relational grades than MVP. The method employed results in consistent grey relational

grades for pollutants, notably NO2 and SO2, across different sites, possibly due to

uniform normalization methods and data consistency, except for adjustments made for

O3 due to its distinct nature. In this sense, DGRA is still sensitive to preprocessing of

data, but on a much lower level than GRA.

For IVP and MVP, results across all sites for nitrogen dioxide levels indicate the

top three most correlated factors are weather variables. In contrast, economic variables

fall toward the end of the ranking. The prevailing factors are average wind speed,

average temperature, and maximum relative humidity. Grades are similar across sites,

though Site 5 has the most dissimilar ranking of factors. There is consistent variation

in ranks 3-5 across each site. For example, maximum relative humidity ranks second at

Site 67, while it ranks fourth at both Site 5 and Site 67. Though the top three factors
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are weather variables, there is slight variation among which variables rank higher

across each site, lending a conclusion to be drawn about the reflection of site

differences in the results.

For IVP and MVP, results across all sites for sulfur dioxide levels indicate the top

three most correlated factors are weather variables. In contrast, economic variables fall

towards the end of the ranking. Average wind speed, average temperature, and

maximum relative humidity are the prevailing factors. Grades are similar across each

site, though site 5 has the most dissimilar ranking of factors. There is consistent

variation in ranks 3-5 across each site. For example, precipitation ranks third at Site

3002 while at Sites 67 and 5, it ranks in the fifth position. Though the top three

factors are weather variables, there is slight variation among which variables rank

higher across each site.

For IVP and MVP, results across all sites for ozone levels indicate the top three

most correlated factors to be weather variables. In contrast, economic variables fall

toward the end of the ranking order. The prevailing factors are average wind speed,

prevailing wind direction, and maximum relative humidity. There is consistent

variation in ranks 3-5 across each site. For example, the prevailing wind direction

ranks third at Site 5, while it ranks fifth and fourth at Site 67 and Site 3002,

respectively. Though the top three factors are weather variables, there is slight

variation among which variables rank higher across each site, lending a conclusion to

be drawn about the reflection of site differences and pollutant changes in the results.

3.5. Limitations

Each criterion must be classified as a lower the better, higher the better, or

moderate the better type. This indicates how data is to be normalized, though this

classification (as indicated by literature) is not necessarily clear when analyzing
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multiple types of data sources. Similarly to GRA, a decision is made regarding the

normalization methods based on several literature sources because of the diverse types

of variables investigated in this study. Javed et. al (2022), pg. 7 also mentioned the

need of consideration of ”considering the uncertainty in the input data, it is suggested

that instead of taking the face value of [the Dynamic Grey Relational Grade],

uncertainty quantification should be done through the Grey Relational Standard

Deviation.” This is not considered for this study, as there is no comparable method to

utilize for both GRA and CCA.

3.6. Conclusion

In conclusion, the findings from our analysis (using both IVP and MVP), shed

light on the complex dynamics associated with air quality across different sites in

Kentucky. While Site 67 receives primary focus in the results section for the sake of

brevity, our subsequent discussion encompasses results from all sites, offering a broader

perspective on air quality dynamics. The sensitivity of dynamic grey relational

analysis to preprocessing methods underscores the importance of careful data

preparation to ensure reliable results. Overall, our analysis reveals consistent orderings

resulting from Dynamic Grey Relational Analysis among both IVP and MVP results,

with Site 5 exhibiting the most variation in grey relational orderings across pollutants.

However, Sites 67 and 3002 present uniform orderings with very similar grey relational

grades. Despite slight variations in rankings, our findings suggest that DGRA is only

minimally sensitive to data preprocessing, underscoring the reliability of the method.

Moving forward, the consistency in grey relational grades across pollutants at each site

suggests the robustness of DGRA in assessing air quality dynamics. Subsequent

analysis reveals weather variables to be associated with NO2, SO2, and O3 levels, with

economic variables exhibiting lesser association.
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CHAPTER 4

Canonical Correlation Analysis

4.1. Literature

Canonical Correlation Analysis (CCA) stands as a powerful multivariate

statistical technique used to explore the relationships between sets of variables. Unlike

univariate analyses that focus on single variables, CCA aims to uncover the

associations between two sets of variables simultaneously, revealing underlying patterns

of correlation between them. A goal of CCA is to ”establish the maximum correlation

among sets of variables” (Statheropoulos, Vassiliadis, & Pappa, 1998, pg. 1088). This

methodology is particularly useful when dealing with complex datasets comprising

multiple interrelated variables, as it allows researchers to identify latent relationships

and extract meaningful information from high-dimensional data. A similar method

employed with data of this type is Principal Components Analysis (PCA) and multiple

regression. CCA differs from PCA in that PCA seeks to maximize variance within each

set of variables independently, whereas CCA maximizes the correlation between the

sets (Statheropoulos, Vassiliadis, & Pappa, 1998). Similarly, CCA differs from

regression analysis in that it does not assume a dependent-independent variable

relationship but rather explores the overall association between two sets of variables.

Abdul-Wahab et al. (2005) used principal component and multiple regression analysis

in modeling ground-level ozone and factors affecting its concentration. They found

that while high temperature and high solar energy tended to increase the data time

ozone concentrations, the pollutants NO2 and SO2 being emitted to the atmosphere

are being depleted. Abdul-Wahab et al. (2005) also mentioned significant amounts of
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multicollinearity among pollutant predictors, which makes multiple of their models

inappropriate. Multiple transformations are needed on the models, specifically

logarithmic transformations. Though multiple regression analysis is a widely used

methodology for showing relationships between predictor variables and the response

variables, it can face serious difficulties when independent variables are correlated with

each other (Mcadams et al., 2000). Other studies have mentioned using artificial

neural networks in combination with stepwise regression analysis which provides a

better analysis of air quality detectors themselves (Liu, Zhao, Jin, Shen, & Li, 2021)

and the use of Pearson correlation coefficient methods, specifically in its limitations–it

can only reflect the “linear relationship between two variables, and the direction of the

correlation has limitations” (Wang et al. 2021, pg. 3). Zyromski et al. (2014) used a

bivariate correlation matrix to investigate the relationship between meteorological

factors and air pollutants and found that wind speed is the most correlated factor.

(Shihab, 2022). Similarly, Habeebullah et al. (2015)used canonical correlation analysis

to achieve the same goal and concluded there is a contribution from meteorological

factors to pollutant emission (Habeebullah, Munir, Awad, Seroji, & Mohammed, 2015;

Shihab, 2022). The versatility of CCA makes it applicable across various domains,

including environmental sciences. In the context of air pollution and meteorological

data analysis, CCA offers a comprehensive approach to discern the intricate

interactions between air quality parameters, meteorological variables, and other

relevant factors. By uncovering the underlying relationships between these sets of

variables, CCA can provide valuable insights into the complex dynamics of air

pollution and weather patterns, facilitating informed decision-making and policy

interventions aimed at mitigating environmental risks and promoting public health.

CCA has primarily been used in education, psychology, marketing, and sociology

(Laessig & Duckett, 1979).
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Multiple studies have focused on air pollution and meteorological data.

Statheropoulos et al. (1998) explore the application of PCA and CCA in assessing

variability in air quality data. The study focuses on the analysis of air quality

parameters, such as sulfur dioxide, nitrogen dioxide, and particulate matter (PM10),

collected from monitoring stations in Thessaloniki, Greece. The results of the PCA

found that air pollution data is related to gasoline combustion, oil combustion, and

ozone interactions, while the most prominent component in meteorological data is dry

conditions and high-speed western winds. Canonical correlation analysis reveals a

relationship between pollution and high humidity along with low wind speed

(Statheropoulos et al., 1998). Additionally, Binaku & Schmeling (2017) investigated

air pollutants concerning meteorological factors during summer months using CCA.

The analysis reveals low wind speed influenced air pollutant variables as well as wind

direction. Borowiak, Zbierska, & Jusik (2011) aimed to study correlations between

tropospheric ozone concentration, wind speed, temperature, solar radiation, and leaf

injury using CCA. They found CCA may be a useful tool for bioindication studies.

Canonical Correlation Analysis has been used in many settings, and its application to

this project may prove useful in discerning complex relationships among pollution,

meteorology, and economic factors.

4.2. Methodology

4.2.1. CCA methodology

Let

X = (X1, ...,Xp), Y = (Y1, ..., Yq)
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denote random vectors. X and Y are based on the number of variables in each set.

Now define a set of linear combinations named U and V, where U corresponds to X,

and V corresponds to the second set of variables, Y (Lesson 13: Canonical Correlation

Analysis , n.d.).

U1 = a11X1 + a12X2 + ... + a1pXp

U2 = a21X1 + a22X2 + ... + a2pXp

⋮

Up = ap1X1 + ap2X2 + ... + appXp

V1 = a11Y1 + a12Y2 + ... + a1qYq

V2 = a21Y1 + a22Y2 + ... + a2qYq

⋮

Vq = aq1Y1 + aq2Y2 + ... + aqqYq.

So we can define (Ui, Vi) as the ith canonical variate pair. Then, computing the

variance of Ui and Vj,

var(Ui) =
p

∑
k=1

q

∑
l=1

bikbilcov(Xk,Xl)

var(Vj) =
p

∑
k=1

q

∑
l=1

bjkbjlcov(Yk, Yl),

and calculating the correlation between Ui and Vj we have

cov(Ui, Vj)√
var(Ui)var(Vj)
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Then the canonical correlation for the ith canonical variate pair is the correlation

between Ui and Vi

ρi =
cov(Ui, Vi)√

var(Ui)var(Vi)
(Lesson 13: Canonical Correlation Analysis , n.d.).

4.2.2. Interpretation of Results

Assumptions in canonical correlation analysis encompass various aspects such as

multivariate normality and homogeneity of variance. Multivariate normality is affirmed

based on the ample data available, ensuring that the data points follow a normal

distribution across multiple variables (Sherry & Henson, 2005). A canonical function is

a mathematical construct comprising standardized coefficients derived from two linear

equations representing the observed predictor and criterion variables. These coefficients

are optimized to maximize the canonical correlation, thereby capturing the underlying

relationship between the two sets of variables. Each canonical function corresponds to

a distinct linear combination of the observed variables. Similar to principal component

analysis where each component captures a different aspect of variance in the data, each

canonical function in canonical correlation analysis encapsulates a specific pattern of

association between the predictor and criterion variables (Samuels, n.d.). Moreover,

the number of canonical functions is determined by the smaller of the two variable sets.

This ensures that all relevant information from both sets is accounted for in the

analysis. Each canonical function serves as a basis for constructing synthetic variables,

which are linear combinations of the observed variables. These synthetic variables are

used to compute the canonical correlation coefficient and assess the strength of the

relationship between the predictor and criterion variable sets.

The analyzed data comprise observed predictor variables and criterion variables.

Weather and economic variables are the predictor variables within this study, while
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pollutant variables are the criterion variables. Synthetic variables, employed as

placeholders for dimension reduction, are used in determining the canonical correlation

coefficient. These synthetic variables represent shared variance between predictor and

criterion variable sets, akin to the effect size represented by R2
c in multiple regression

analysis (Sherry & Henson, 2005). Canonical correlation coefficients (Rc) denote the

Pearson correlation between two synthetic variables derived from canonical functions,

exhibiting a positive range from 0 to 1. These coefficients, analogous to multiple R in

regression, determine the relationship between the predictor and criterion variable sets.

Squared canonical correlation (R2
c) represents the variance accounts for effect size

shared by each synthetic variable (Sherry & Henson, 2005). This measure is

interpreted similarly to the R2 in multiple regression. Standardized canonical function

coefficients are utilized in linear equations to combine observed variables, maximizing

canonical correlation. They are interpreted similarly to beta weights in regression.

Structure coefficients (rs) represent the relationship between the observed and

synthetic variables, akin to structure coefficients in factor analysis or multiple

regression. They help to define the structure of the synthetic variable (Sherry &

Henson, 2005). The squared canonical structure coefficients specify how much variance

a predictor variable shares with a synthetic variable (Sherry & Henson, 2005). The

canonical commonality coefficient (h2) reflects the proportion of variance explained by

the complete canonical solution, gauging the utility of observed variables in the

analysis. This is found by summing the squared canonical structure coefficient.

4.3. Results

We now present a comprehensive analysis encompassing all sites and pollutants,

providing valuable insights into the complex relationships between environmental

variables and air quality. Each table includes canonical coefficients, structure
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coefficients, squared canonical structure coefficients, and the commonality coefficient,

offering an examination of the interrelationships among variables. More detailed

results are available in the appendix.

4.3.1. Site 5

A canonical correlation analysis is conducted using the three economic variables

as predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., economic and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .0315, .0212,

and .001 for each successive function.

Collectively, only the first dimension of the model across all functions is

statistically significant using Wilk’s λ = .947 criterion, F(9,759.477) = 1.905, p = .0482.

Because Wilk’s λ represents the variance unexplains by the model, 1 − λ yields the full

model effect size in an R2 metric. Thus, for the set of one canonical function, the R2

type effect size is 0.0529, which indicates that the full model explains a small portion,

only about 5.2%, of the variance shared between the variable sets.

The dimension reduction analysis allows for testing of the hierarchical

arrangement of functions for statistical significance (Canonical Correlation Analysis in

Detail , 2018). As noted, the full model (Functions 1 to 3) is statistically significant.

Function 2 to 3 do not explain a statistically significant amount of shared variance

between the variable sets, F (4,626) = 1.759, p = .135. Additionally, Function 3 (which

is the only function that is tested in isolation) does not explain a statistically

significant amount of shared variance between the variable sets, F (1,314) = .300,

p = .5843. Given the (R2
c) effects for each function, none of the functions could be

considered noteworthy in the context of this study (3.15%,2.12%, and .09% of the

shared variance, respectively).
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Table 4.3.1. Canonical Solution for Weather Predicting Pollutant Levels
for Functions 1, 2, and 3 at Site 5

Function 1 Function 2 Function 3

Variable Coef rs r2s(%) Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT 0.2125 0.1042 1.0850 0.5784 0.1783 3.1787 -0.4071 -0.1191 1.4193 5.6829

MRH 0.3444 0.0287 0.0823 0.0413 -0.0214 0.0457 0.5348 0.1756 3.0849 3.2129
P 0.3679 0.2559 6.5502 0.0207 0.0410 0.1684 0.5416 0.1412 1.9929 8.7115

PWD 0.2362 0.2209 4.8813 -0.8712 -0.2569 6.5998 -0.2498 -0.0939 0.8822 12.3633
AWS 0.8194 0.4316 18.6241 0.2914 0.0184 0.0338 -0.1306 -0.0793 0.6281 19.2860
O3 -0.4375 -0.3603 12.9842 0.1805 0.0014 0.0002 -0.9555 -0.1859 3.4559 16.4403

NO2 -0.4710 -0.4174 17.4248 -0.9225 -0.1881 3.5388 0.4284 0.0638 0.4067 21.3703
SO2 -0.4722 -0.3764 14.1655 0.8503 0.1863 3.4724 0.4396 0.1087 1.1806 18.8185

A canonical correlation analysis is conducted using the five weather variables as

predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., weather and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .283, .110,

and .064 for each successive function. Collectively, the full model across all functions is

statistically significant using the Wilk’s λ = .597 criterion, F(15, 856.175) = 11.722,

p < .001. For the set of one canonical function, the R2 type effect size is 0.403, which

indicates that the full model explains a substantial portion, about 40.3%, of the

variance shared between the variable sets. As noted, the full model (Functions 1 to 3)

is statistically significant. Functions 2 to 3 and 3 to 3 are also statistically significant,

F (8,622) = 7.448, p < .001, and F (3,312) = 7.095, p < .001, respectively. Given the

(R2
c) effects for each function, only the first function could be considered noteworthy in

the context of this study (28.29% of the shared variance). The last two functions only

explain 11.04% and 6.39%, respectively, of the remaining variance in the variable sets

after the extraction of the prior functions.

Table 4.3.1 presents the standardized canonical function coefficients and structure

coefficients for Function 1. The squared structure coefficients are also given as well as

the commonalities (h2) across the three functions for each variable. Looking at the

standardized coefficients for Function 1, one sees that the relevant criterion variables
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are primarily average wind speed, precipitation, and prevailing wind direction. This

conclusion is supported by both the standardized and squared structure coefficients.

Additionally, maximum relative humidity has a modest standardized coefficient with a

small squared structure coefficient. Furthermore, all these variables’ structure

coefficients in Function 1 are positive, indicating they are positively related with

respect to the first function. Regarding the predictor variable set in function 1, NO2,

and SO2 are the primary contributors to the synthetic predictor variable set. Both

NO2, and SO2’s structure coefficients are negative, indicating that they are negatively

associated with each of the weather variables.

Table 4.3.2. Canonical Solution for Weather and Economic Variables
Predicting Pollutant Levels for Functions 1, 2, and 3 at Site 5

Function 1 Function 2 Function 3

Variable Coef rs r2s(%) Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT 0.1227 0.0755 0.5703 0.5372 0.2016 4.0650 0.3182 0.1024 1.0476 5.6829

MRH 0.5068 0.0488 0.2378 -0.8599 -0.1595 2.5436 0.4657 0.0657 0.4316 3.2129
P 0.3636 0.2650 7.0222 -0.1357 -0.0698 0.4875 0.1582 0.1096 1.2019 8.7115

PWD 0.2543 0.2308 5.3256 -0.1091 -0.0094 0.0088 -0.8033 -0.2651 7.0289 12.3633
AWS 0.8235 0.4177 17.4445 0.1355 0.1352 1.8291 0.3267 -0.0111 0.0124 19.2860
MLC -0.1554 -0.0920 0.8468 -0.0417 -0.0426 0.1815 0.4150 0.1307 1.7093 2.7376

M -0.2574 0.0088 0.0078 -0.2032 0.1022 1.0436 -0.1902 -0.0407 0.1657 1.2171
TTU 0.0578 -0.0034 0.0012 -1.1266 -0.1357 1.8416 -0.0484 0.0123 0.0151 1.8579
O3 -0.5496 -0.4081 16.6552 0.8603 0.2260 5.1076 -0.3078 -0.1277 1.6318 23.3946
NO2 -0.3432 -0.3829 14.6616 -0.8701 -0.2411 5.8152 -0.6177 -0.1392 1.9365 22.4133

SO2 -0.4935 -0.3831 14.6757 -0.0468 -0.0840 0.7053 0.9453 0.2390 5.7143 21.0952

A canonical correlation analysis is conducted using the eight weather and

economic variables as predictors of the three pollutant variables to evaluate the

multivariate shared relationship between the two variable sets (i.e., economic, weather

and pollutant levels). The analysis yields three functions with squared canonical

correlations (R2
c) of .297, .167, and .123 for each successive function.

Collectively, the full model across all functions is statistically significant using

Wilk’s λ = .514 criterion, F(24, 890.995) = 9.584, p < .001. For the set of one canonical

function, the R2 type effect size is 0.486, which indicates that the full model explains a

substantial portion, about 48.6%, of the variance shared between the variable sets.
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As noted, the full model (Functions 1 to 3) is statistically significant. Functions 2

to 3 and 3 to 3 are also statistically significant, F (14,616) = 7.478, p < .001, and

F (6,309) = 7.247, p < .001, respectively. Given the (R2
c) effects for each function, only

the first function could be considered noteworthy in the context of this study (29.7% of

the shared variance). The last two functions only explain 16.7% and 12.3%,

respectively, of the remaining variance in the variable sets after extracting the prior

functions.

Table 4.3.2 presents the standardized canonical function coefficients and structure

coefficients for Functions 1, 2, and 3. The squared structure coefficients are also given

as well as the commonalities (h2) across the three functions for each variable. Looking

at the coefficients for Function 1 across all weather and economic variables, one sees

that the relevant criterion variables are primarily average wind speed, precipitation,

and prevailing wind direction. These results are supported by both the standardized

coefficients and squared structure coefficients. Additionally, maximum relative

humidity has a modest standardized coefficient with a small squared structure

coefficient. This could be due to multicollinearity. Furthermore, all the weather

variables’ structure coefficients in Function 1 are positive, indicating they are

positively related with respect to the first synthesis function.

Regarding the predictor variable set in function 1, O3 and SO2 are the primary

contributors to the synthetic predictor variable, followed by NO2. Because the

structure coefficient (for Function 1) for each is negative, they are negatively related to

each of the weather variables and trade, transportation, and utilities, and positively

related to mining, logging, and construction as well as manufacturing. Because all

three Functions present significant findings, we can consider h2. Table 4.3.2 indicates

average wind speed, prevailing wind direction, and precipitation are the most useful

variables for the entire analysis.
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4.3.2. Site 67

A canonical correlation analysis is conducted using the three economic variables

as predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., economic and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .0739, .0278,

and .0004 for each successive function.

Collectively, only the first dimension of the model across all functions is

statistically significant using Wilk’s λ = .900 criterion, F(9,744.874) = 3.66, p < .001.

for the set of one canonical function, the R2 type effect size is 0.1, which indicates that

the full model explains a small portion, about 10%, of the variance shared between the

variable sets.

As noted, the full model (Functions 1 to 3) is statistically significant. Functions 2

to 3 do not explain a statistically significant amount of shared variance between the

variable sets, F (4,614) = 2.211, p = .0664. Additionally, Function 3 (which is the only

function that is tested in isolation) does not explain a statistically significant amount

of shared variance between the variable sets, F (1,308) = .129, p = .7197. Given the

(R2
c) effects for each function, none of the functions could be considered noteworthy in

the context of this study (7.39%, 2.78%, and .04% of the shared variance, respectively).

Table 4.3.3. Canonical Solution for Weather Predicting Pollutant Levels
for Functions 1, 2, and 3 at Site 67

Function 1 Function 2 Function 3

Variable Coef rs r2s(%) Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT 0.1066 0.0887 0.7861 -0.9594 -0.4090 16.7310 -0.1214 -0.0681 0.4634 17.9806

MRH 0.0708 -0.1408 1.9815 0.3043 0.1243 1.5445 -0.7194 -0.1215 1.4768 5.0028
P 0.3814 0.4043 16.3453 0.1713 0.0894 0.7990 0.5359 0.0813 0.6612 17.8055

PWD -0.2224 -0.0939 0.8826 0.1833 0.0108 0.0117 -0.5180 -0.1783 3.1780 4.0723
AWS 0.8016 0.5419 29.3644 0.1401 0.0039 0.0015 -0.6566 -0.0684 0.4672 29.8331

O3 -0.5363 -0.4965 24.6503 -0.7041 -0.2051 4.2078 0.6780 0.0980 0.9611 29.8193
NO2 -0.6459 -0.5338 28.4906 0.7754 0.1614 2.6060 -0.4841 -0.0883 0.7792 31.8758
SO2 0.0208 -0.0995 0.9907 -0.6458 -0.2764 7.6405 -0.7859 -0.2129 4.5318 13.1630
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A canonical correlation analysis is conducted using the five weather variables as

predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., weather and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .371, .201,

and .076 for each successive function. Collectively, the full model across all functions is

statistically significant using Wilk’s λ = .464 criterion, F(15, 839.612) = 17.928,

p < .001. For the set of one canonical function, the r2 type effect size is 0.535, which

indicates that the full model explains a substantial portion, about 53.5%, of the

variance shared between the variable sets. As noted, the full model (Functions 1 to 3)

is statistically significant. Functions 2 to 3 and 3 to 3 are also statistically significant,

F (8,610) = 12.503, p < .001, and F (3,306) = 8.443, p < .001, respectively. Given the

(R2
c) effects for each function, only the first two functions could be considered

noteworthy in the context of this study (37.1% and 20.08% of the shared variance,

respectively). The last function explains 7.65% of the remaining variance in the

variable sets after extracting the prior functions.

Table 4.3.3 presents the standardized canonical function coefficients and structure

coefficients for Functions 1 and 2. The squared structure coefficients are also given as

well as the commonalities (h2) across the three functions for each variable. Looking at

the standardized coefficients for Function 1, one sees that the relevant criterion

variables are primarily average wind speed and precipitation. This conclusion is

supported by both the standardized and squared structure coefficients. Furthermore,

both average wind speed and precipitation structure coefficients are positive, indicating

positive associations with the first synthesis function.

Regarding the predictor variable set in Function 1, O3 and NO2 are the primary

contributors to the synthetic predictor variable. Because the structure coefficient for

each is negative, they are negatively related to the primary weather variables; average

wind speed, and precipitation.
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Looking at the standardized coefficients for Function 2, one sees that the relevant

criterion variable is average temperature. This conclusion is supported by both the

standardized and squared structure coefficients.

Regarding the predictor variable set in Function 2, all three pollutants are

contributors to the synthetic predictor variable. Because the structure coefficients for

each are negative for O3 and SO2 and are positive for NO2, O3, and SO2 are positively

correlated to the primary weather factor average temperature in function 2 while NO2

is negatively correlated to average temperature.

Table 4.3.4. Canonical Solution for Weather and Economic Variables
Predicting Pollutant Levels for Functions 1, 2, and 3 at Site 67

Function 1 Function 2 Function 3

Variable Coef rs r2s(%) Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT 0.1001 0.0662 0.4387 0.9016 0.4181 17.4791 -0.1759 -0.0251 0.0628 17.9806

MRH 0.0765 -0.1379 1.9027 -0.2161 -0.1012 1.0234 0.5957 0.1441 2.0766 5.0028
P 0.3753 0.4104 16.8463 -0.1825 -0.0831 0.6904 -0.3345 -0.0518 0.2688 17.8055

PWD -0.2318 -0.0985 0.9701 -0.1128 0.0246 0.0604 0.4780 0.1744 3.0419 4.0723
AWS 0.7824 0.5392 29.0707 0.0060 0.0414 0.1715 0.5500 0.0769 0.5908 29.8331

MLC -0.2231 -0.0601 0.3608 0.3143 0.1261 1.5894 -0.0328 0.1572 2.4702 4.4205

M -0.1689 -0.0639 0.4088 0.1746 0.1673 2.7995 0.2296 0.1601 2.5636 5.7719
TTU 0.2722 -0.0149 0.0223 -0.0707 0.0983 0.9665 0.3783 0.1960 3.8429 4.8317

O3 -0.5504 -0.5081 25.8169 0.5022 0.1516 2.2990 -0.8294 -0.1571 2.4678 30.5837
NO2 -0.6206 -0.5329 28.4005 -0.6803 -0.1545 2.3875 0.6362 0.1280 1.6373 32.4252
SO2 -0.0343 -0.1331 1.7708 0.8067 0.3620 13.1069 0.6189 0.2057 4.2311 19.1089

A canonical correlation analysis is conducted using the eight weather and

economic variables as predictors of the three pollutant variables to evaluate the

multivariate shared relationship between the two variable sets (i.e., economic, weather,

and pollutant levels). The analysis yields three functions with squared canonical

correlations (R2
c) of .378, .224, and .115 for each successive function.

Collectively, the full model across all functions is statistically significant using

Wilk’s λ = .427 criterion, F(24, 873.593) = 12.41, p < .001. For the set of one canonical

function, the R2 type effect size is 0.573, which indicates that the full model explains a

substantial portion, about 57.3%, of the variance shared between the variable sets. As

noted, the full model (Functions 1 to 3) is statistically significant. Functions 2 to 3 and
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3 to 3 are also statistically significant, F (14,604) = 8.917, p < .001, and

F (6,303) = 6.557, p < .001, respectively. Given the (R2
c) effects for each function, only

the first two functions could be considered noteworthy in the context of this study

(37.8% and 22.4% of the shared variance, respectively). The last function only explains

11.5% of the remaining variance in the variable sets after extracting the prior functions.

Table 4.3.4 presents the standardized canonical function coefficients and structure

coefficients for Functions 1, 2, and 3. The squared structure coefficients are also given

as well as the commonalities (h2) across the three functions for each variable. Looking

at the coefficients for Function 1, one sees that the relevant criterion variables are

primarily average wind speed and precipitation. These results are supported by both

the standardized coefficient and squared structure coefficients. Furthermore, both

variables’ structure coefficients are positive indicating they are positively related to the

first function. Economic variables except for trade, transportation, and utilities have

negative standardized coefficients. However, all economic variables’ structure

coefficients are very small, indicating negligible association with the first function.

Regarding the predictor variable set in Function 1, O3 and NO2 are the primary

contributors to the synthetic predictor variable. Because the structure coefficient for

each is negative, they are negatively related to the two primary weather variables.

For Function 2, the average temperature is the most relevant criterion variable,

followed by mining, logging, and construction, though mining, logging, and

construction has a relatively small squared structure coefficient, comparatively.

Regarding the predictor variable set in Function 2, SO2 is the primary

contributor to the synthetic predictor variable, followed by NO2. Because the structure

coefficient is positive and negative respectively, they are positively and inversely

related to the primary weather variable average temperature.
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4.3.3. Site 3002

A canonical correlation analysis is conducted using the three economic variables

as predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., economic and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .0370, .0248,

and .0053 for each successive function. Collectively, only the first and second

dimensions of the model across all functions are statistically significant using Wilk’s

λ = .934 criterion, F(9,820.32) = 2.587, p = .0061. For the set of one canonical function,

the R2 type effect size is 0.065, which indicates that the full model explains a small

portion, about 6.5%, of the variance shared between the variable sets. Function 2 to 3

explain a statistically significant amount of shared variance between the variable sets,

F (4,676) = 2.689, p = .0357. As noted, the full model (Functions 1 to 3) is statistically

significant, as well as Functions 2 to 3. Function 3 (which is the only function that is

tested in isolation) does not explain a statistically significant amount of shared

variance between the variable sets, F (1,339) = 1.81, p = .179. Given the (R2
c) effects for

each function, none of the functions could be considered noteworthy in the context of

this study (3.7%,2.48%, and .53% of the shared variance, respectively).

Table 4.3.5. Canonical Solution for Weather Predicting Pollutant Levels
for Functions 1 and 2 at Site 3002

Function 1 Function 2

Variable Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT -0.0943 -0.1222 1.4944 0.9346 0.2442 5.9627 7.4572

MRH 0.6966 0.3739 13.9787 -0.2269 -0.0927 0.8596 14.8383
P 0.3379 0.3153 9.9407 -0.0184 0.0005 0.0000 9.9407

PWD -0.1373 -0.0870 0.7566 -0.0676 0.0042 0.0018 0.7584
AWS 0.6157 0.3047 9.2824 0.6531 0.1430 2.0450 11.3274
O3 -0.9138 -0.5675 32.2075 0.4599 0.0513 0.2634 32.4709

NO2 -0.1579 -0.2741 7.5139 -1.0636 -0.2991 8.9479 16.4617
SO2 -0.0936 -0.1727 2.9824 0.1768 0.0035 0.0012 2.9836
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A canonical correlation analysis is conducted using the five weather variables as

predictors of the three pollutant variables to evaluate the multivariate shared

relationship between the two variable sets (i.e., weather and pollutant levels). The

analysis yields three functions with squared canonical correlations (R2
c) of .334, .117,

and .0115 for each successive function. Collectively, the full model across all functions

is statistically significant using the Wilk’s λ = .581 criterion, F(15, 925.19) = 13.407,

p < .001. For the set of one canonical function, the R2 type effect size is 0.419, which

indicates that the full model explains a substantial portion, about 41.9%, of the

variance shared between the variable sets. As noted, the full model (Functions 1 to 3)

is statistically significant. Functions 2 to 3 are also statistically significant with

F (8,672) = 12.503, p < .001. Given the (R2
c) effects for each function, only the first

function could be considered noteworthy in the context of this study (33.4% of shared

variance). The last two functions account for 11.7% and 1.15%, respectively, of the

remaining variance in the variable sets after the extraction of the prior functions. Table

4.3.5 presents the standardized canonical function coefficients and structure coefficients

for Functions 1 and 2. The squared structure coefficients are also given as well as the

commonalities (h2) across the three functions for each variable. Looking at the

coefficients for Function 1, one sees that the relevant criterion variables are primarily

maximum relative humidity, average wind speed, and precipitation. This conclusion is

supported by both the standardized and squared structure coefficients. Furthermore,

all these variables’ structure coefficients are positive indicating they are positively

related to the first function. Regarding the predictor variable set in Function 1, O3 is

the primary contributor to the synthetic predictor variable. Because the structure

coefficient for O3 is negative, it is negatively related to the primary weather variables.

A canonical correlation analysis is conducted using the eight weather and

economic variables as predictors of the three pollutant variables to evaluate the

multivariate shared relationship between the two variable sets (i.e., economic, weather
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Table 4.3.6. Canonical Solution for Weather and Economic Variables
Predicting Pollutant Levels for Functions 1, 2 and 3 at Site 3002

Function 1 Function 2

Variable Coef rs r2s(%) Coef rs r2s(%) h2(%)
AT -0.1756 -0.1167 1.3609 0.8490 0.2461 6.0576 7.4184

MRH 0.8066 0.3713 13.7897 -0.1882 -0.0999 0.9974 14.7871
P 0.2776 0.3167 10.0282 -0.0627 -0.0078 0.0061 10.0343

PWD -0.1091 -0.0833 0.6939 -0.0992 0.0019 0.0003 0.6943
AWS 0.6047 0.3076 9.4595 0.5667 0.1366 1.8673 11.3268
MLC -0.7883 0.0702 0.4930 -0.6217 -0.0865 0.7483 1.2414

M -0.3556 0.0828 0.6856 0.8919 -0.0029 0.0008 0.6864
TTU 0.8720 0.1045 1.0929 -0.2294 -0.0295 0.0870 1.1799
O3 -0.9140 -0.5984 35.8067 0.4905 0.0634 0.4023 36.2091

NO2 -0.1822 -0.2977 8.8636 -1.0574 -0.3155 9.9535 18.8171
SO2 -0.0512 -0.1597 2.5510 0.1333 -0.0095 0.0091 2.5600

and pollutant levels). The analysis yields three functions with squared canonical

correlations (R2
c) of .371, .132, and .023 for each successive function. Collectively, the

full model across all functions is statistically significant using the Wilk’s λ = .533

criterion, F(24, 963.502) = 9.717, p < .001. For the set of one canonical function, the

R2 type effect size is 0.467, which indicates that the full model explains a substantial

portion, about 46.7%, of the variance shared between the variable sets. As noted, the

full model (Functions 1 to 3) is statistically significant. Functions 2 to 3 and 3 to 3 are

also statistically significant, F (14,666) = 4.080, p < .001, and F (6,334) = 1.289,

p < .001, respectively. Given the (R2
c) effects for each function, only the first function

could be considered noteworthy in the context of this study (37.1% of the shared

variance). The last two functions only explain 13.2% and 2.3%, respectively, of the

remaining variance in the variable sets after extracting the prior functions. Table 4.3.6

presents the standardized canonical function coefficients and structure coefficients for

Functions 1 and 2. The squared structure coefficients are also given as well as the

commonalities (h2) across the three functions for each variable. Looking at the

coefficients for Function 1, one sees that the relevant criterion variables are primarily
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maximum relative humidity, precipitation, and average wind speed with relatively

higher standardized and structure coefficients. Additionally, mining, logging, and

construction has a high standardized coefficient with a small squared structure

coefficient, indicating negligible association with the first synthesis function.

Furthermore, all three weather variables’ structure coefficients are positive, indicating

they are positively related to the first function. Regarding the predictor variable set in

Function 1, O3 is the primary contributor to the synthetic predictor variable. Because

the structure coefficient of O3 is negative, it is negatively correlated to the three

primary weather variables.

4.4. Discussion

This model indicates that the most correlated factors among weather variables at

Site 5 are primarily average wind speed, precipitation, and prevailing wind direction.

Each factor has a high standardized coefficient with a sizeable structure coefficient,

indicating that not only are the variables important to the model, but they also

influence the model significantly. This is also the case amongst both economic and

weather variables. However, maximum relative humidity has a high standardized

coefficient with a very small structure coefficient. This could be due to

multicollinearity amongst the data. Among only economic variables, only one

dimension of the model is statistically significant and does not explain enough of the

variation within the model to consider formal interpretation.

These models indicate that at Site 67, the most correlated factors among weather

variables are primarily average wind speed and precipitation. Prevailing wind direction

features a moderate standardized coefficient with a low structure coefficient, indicating

a small influence on the model itself. This could be due to multicollinearity. Among

just weather variables, average wind speed and precipitation are inversely correlated
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with both ozone and nitrogen dioxide, while positively correlated with sulfur dioxide.

Among both economic and weather variables, average wind speed and precipitation are

the most correlated factors, as they both feature large standardized coefficients with

large structure coefficients. In the second Function, the average temperature has a high

standardized coefficient as well as a large structure coefficient. Among both weather

variables and economic variables, precipitation and average wind speed are all inversely

correlated with all pollutant levels.

The models for Site 3002 indicate that the most correlated variables among just

weather variables and among both economic and weather variables are maximum

relative humidity, average wind speed, and precipitation. Each feature has similar

structure coefficients and high standardized coefficients. Trade, transportation, and

utilities as well as mining, logging, and construction feature high standardized

coefficients with small structure coefficients, indicating they have much less influence

on the model than the most correlated variables.

These results are similar to results found in the extant literature, which primarily

indicate average wind speed to be a top contributor to pollutant levels. For more

information regarding this, see the literature section of this chapter. Therefore, we can

conclude that using CCA on this data set is an effective methodology for studying air

pollution and meteorological factors. Additionally, there is some association with

economic factors, which is logically to be expected, though this is not fully indicated

within other analyses of the same data (DGRA and GRA). This is further discussed in

Chapter 5.

4.5. Conclusion

In conclusion, Canonical Correlation Analysis serves as a valuable tool for

exploring relationships between sets of variables, providing insights into air quality
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dynamics across different sites. However, it is essential to acknowledge the limitations

of CCA, including its assumption of linear relationships, sensitivity to outliers and

multicollinearity, and challenges in interpretation, particularly with low canonical

correlations. Despite these constraints, our analysis reveals significant findings

regarding the correlated factors affecting air quality at various sites. At Site 5, average

wind speed, precipitation, and prevailing wind direction emerge as primary influencers,

aligning with existing literature. Similarly, at Site 67, these weather variables, along

with average temperature and maximum relative humidity, play pivotal roles. Site

3002 exhibits similar patterns, with maximum relative humidity, average wind speed,

and precipitation being associated with air quality significantly. The incorporation of

economic factors further enriched our understanding, highlighting the complex

interplay between meteorological and socioeconomic variables. Although CCA offers

valuable insights, its limitations necessitate careful consideration and complementary

methods. Nonetheless, our findings underscore the effectiveness of CCA in studying air

pollution and meteorological factors, providing a robust framework for future research

in environmental management and public health.

4.6. Limitations

While Canonical Correlation Analysis offers valuable insights into the

relationships between sets of variables and has been widely used in various fields, it

does have several limitations. Firstly, CCA assumes linear relationships between

variables, which may not always accurately capture the complex non-linear interactions

present in real-world data. Additionally, CCA requires a relatively large sample size to

produce reliable results, and small sample sizes may lead to unstable estimates.

Moreover, CCA is sensitive to outliers, correlated observations, and multicollinearity

between variables, which can distort results and reduce the robustness of the analysis.
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Furthermore, CCA does not provide information on causality or the directionality of

relationships between variables, limiting its ability to infer causal mechanisms. Lastly,

interpretation of CCA results can be challenging, particularly when dealing with a

large number of variables or when correlations between canonical variates are low.

This study features some low canonical correlations. Overall, while CCA is a powerful

multivariate analysis technique, researchers should be cautious of its limitations and

consider complementary methods to enhance the interpretability of their findings.
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CHAPTER 5

Comparison and Discussion

5.1. Discussion and Limitations

In this comprehensive discussion section, we discuss the similarities and

differences between three prominent multivariate analysis techniques: Dynamic Grey

Relational Analysis, Canonical Correlation Analysis, and Grey Relational Analysis.

These methodologies offer distinct approaches to understanding the complex

relationships within datasets, each with its strengths and limitations. We also explore

how DGRA and GRA share similarities in their utilization of grey relational

coefficients to measure the similarity between variables, yet differ in their treatment of

the distinguishing coefficient, with DGRA dynamically adjusting this parameter based

on the data, while GRA maintains a static value. Conversely, CCA stands apart as a

functional model that explicitly models linear relationships between sets of variables.

Furthermore, we address the nuances of normalization and standardization methods

employed in our study, which play a crucial role in preprocessing the data for analysis.

Additionally, the limitations inherent in our study are examined, including

assumptions made in the analysis, potential biases, and constraints in data availability

and quality. By elucidating these methodological considerations and limitations, we

aim to provide a comprehensive understanding of the analytical approaches employed

and the implications of our findings. Dynamic Grey Relational Analysis and Grey

Relational Analysis share similarities in their fundamental approach to analyzing

relationships within datasets. Both methods utilize grey relational coefficients to

measure the similarity between variables, allowing for the identification of correlated
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factors. However, they differ in their implementation: DGRA incorporates a dynamic

calculation of the distinguishing coefficient, adapting it based on the data, while GRA

employs a static value of 0.5 for this coefficient. This dynamic aspect of DGRA enables

it to better capture the variability within the dataset, potentially leading to more

accurate results. Moreover, both DGRA and GRA are non-functional models, meaning

they do not explicitly model the functional relationship between variables but rather

assess their relational patterns. In contrast, Canonical Correlation Analysis is a

functional model that explicitly models the linear relationships between sets of

variables. Unlike DGRA and GRA, CCA does not require preprocessing other than

addressing missing data, offering a more straightforward approach to analyzing

multivariate relationships. Additionally, it is important to mention the difference in

the interpretative nature of both CCA and DGRA. CCA gives a researcher much more

information into the dynamic workings of a system (while considering all dependent

variables), while DGRA ranks factors using a grade between zero and one. Overall,

while DGRA and GRA provide valuable insights into the relational patterns within

datasets, CCA offers a more structured and comprehensive framework for

understanding the functional relationships between variables.

Grey relational analysis methodology reveals inconsistencies in relational ranking

across standardization methods, suggesting the method is sensitive to pre-processing.

Results indicate the most correlated variables for NO2 are average temperature,

precipitation, average wind speed, and maximum relative humidity. Specifically at Site

5, mining, logging, and construction as well as trade, transportation, and utilities are

among the most correlated. However, overwhelmingly at Sites 67 and 3002, weather

variables dominate. Conversely, for SO2, economic variables are consistently highly

ranked among each site, with precipitation being the only other variable mentioned in

the top half of most correlated variables. For O3, results are somewhat similar to NO2

in that average temperature consistently ranks first across all sites and standardization
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methods. Consistencies in every other grey relational order are practically non-existent

at each site and standardization method. Generally, economic variables rank low across

all sites for both ozone and nitrogen dioxide, but results are overall not consistent.

Dynamic grey relational analysis methodology reveals consistencies in relational

ranking across standardization methods, suggesting it is not as sensitive to these

processes as grey relational methodology is. That said, for all three pollutants, results

indicate the most correlated factors of all pollutants to be weather variables, primarily

average wind speed (Sites 5 and 3002 across all pollutants), average temperature (Site

67 across all pollutants), followed widely by maximum relative humidity and prevailing

wind direction. Economic variables rank low, with very small grey relational grades,

indicating their association with pollutant levels to be small. Canonical Correlation

Analysis methodology reveals multiple correlated factors that differ across each site.

At Site 5, the most correlated factors among both economic and weather variables are

average wind speed, precipitation, and wind direction. At Site 67, the most correlated

factors among both economic and weather variables are average wind speed and

precipitation followed by average temperature and mining, logging, and construction.

Thirdly, at Site 3002, the most correlated variables among both weather and economic

variables are trade, transportation and utilities, maximum relative humidity, and

mining, logging, and construction.

DGRA and GRA methodologies present wildly different results. Not only do

rankings amongst variables nearly flip between the two methods, but grades also

widely differ. Additionally, standardization methods used in the pre-processing of data

provide differences in ranking amongst both methods, though more widely in GRA

results. Firstly, the comparison of DGRA and GRA results gives insight into the

possible limitations of GRA. Not only are rankings inconsistent, but GRA results show

economic variables as highly ranked in comparison to weather variables. DGRA has

the opposite result. Comparing both of these to CCA results, DGRA has much more
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similar results to CCA than GRA has, which nearly completely discredits GRA

methodology in and of itself because CCA is a widely used and trusted multivariate

statistical method. This is additionally supported by the low grey relational grades

resulting from DGRA results for economic variables as well as low standardized

coefficients in CCA. While rankings exhibit discrepancies, it is challenging to interpret

the results of Canonical Correlation Analysis in terms of a definitive ”ranking.”

However, weather variables are still generally considered more correlated than

economic variables. This is not the outcome of using Grey Relational Analysis. There

are several reasons this could be. Firstly, a drawback of the GRA methodology is the

necessity for preprocessing of data, and the nature of the data that is used. The Grey

Relational Analysis (GRA) methodology presents a drawback due to the necessity for

data preprocessing, as highlighted in the literature. When discussing the nature of

GRA and pollutant type, J.T. Huang & Liao (2003, pg. 1711) say “When the

range of the sequence is too large or the standard value is too enormous, it will cause

the influence of some factors to be neglected. In addition, in the sequence, if the

factors’ goals and directions are different, the relational analysis might also produce

incorrect results. Therefore, preprocessing of all the data is necessary.” This could

explain the lack of consistency in rankings resulting from GRA. However, there is a bit

of nuance in the language used by Huang and Liao. For example, what exactly

constitutes ”too large” or ”too enormous” in terms of the standard value, and what is

meant by the ”goals and directions” of the factors? This conclusion is not supported

by mathematical justification, which leads to the question of to what extent this affects

the reliability of the method. Though there have been improvements made to GRA

methodology (through DGRA and separate approaches to data [see (Javed et al., 2022;

Dai, Liu, & Hu, 2014; Yamaguchi, Li, & Nagai, n.d.))], the method itself is inherently

flawed for studies of this type, where multiple types of data are investigated. That

said, the literature also indicates that this is why we use normalization and

62



standardization techniques to remedy this issue. However, there is no convention of

which normalization processes to use, as discussed previously. In industry settings,

standardization or normalization methods are often straightforwardly chosen based on

established protocols or best practices due to well-defined data standards and uniform

distributions. Studies such as (J. T. Huang & Liao, 2003; Kuo, Yang, & Huang, 2008;

Muqeem, Sherwani, Ahmad, & Khan, 2017) utilized normalization methods like

”higher the better” or ”lower the better” in their Grey Relational Analysis research

involving industry-related data. However, in environmental data analysis, the literature

reveals a more varied approach. For instance, Shexia et al. (2018) applied Initial Value

Processing to water quality data, while Pan et al., (2011) and Tao et al. (2015) didn’t

specify normalization methods for air quality index (AQI) and economic data in their

GRA studies. Studies like Zeydan et al. (2021) predominantly used ”higher the better”

and ”lower the better” techniques for raw pollution data. Similarly, Huang (2020) and

Ng (1994) employed IVP and MVP techniques in economic data analysis. Therefore,

the selection of standardization or normalization techniques in environmental and

economic studies requires careful consideration of data characteristics, analytical

assumptions, and research objectives. The choice of methods in environmental data

analysis appears to be influenced by the unique complexities inherent in the data itself.

Conclusively, the preprocessing of data is an issue that is highlighted in both

DGRA and GRA results. Results for GRA indicate widely different rankings, with

very few sites and pollutants providing similar rankings across pre-processing methods.

Though this is seen in a few places in DGRA results, orderings are much more

consistent, and grey relational grades calculated are also much more consistent. This

finding is corroborated by Javed et al., (2022), which indicates that within the field of

multi-criterion decision-making, it is ”not unusual to obtain different rankings using

different normalization techniques” (pg. 6). Additionally, Javed et al. (2022) briefly

discussed when presenting the methodology of DGRA, and proposed the Ideal
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Alternative Function to solve this problem. However, this is still a normalization

technique that relies on extracting an ideal alternative from a decision matrix (Javed

et al., 2022). This is not utilized in this study because normalization is comprised of

literature-based decisions, especially since the behavior of pollutants is taken into

consideration when the pre-processing of data occurs. Additionally, it is important to

mention the difference in the interpretative nature of both CCA and DGRA. CCA

gives a researcher much more information into the dynamic workings of a system

(while considering all dependent variables), while DGRA ranks factors using a grade

between zero and one. Thus, when considering these results, it is imperative to

consider the bigger picture when looking for consistencies and inconsistencies between

the results of each methodology. However, multiple regression could be used to further

discuss the results of GRA and DGRA. Multiple Linear Regression (MLR) is used to

determine the relationship between a quantitative dependent variable and two or more

independent variables as a way to validate GRA and DGRA results. Site 67 is included

within this discussion to stay consistent with results in other chapters. Table 6.4.1 and

6.4.2 include a comparison of MLR results to GRA and DGRA results. Each model is

significant with p-value < .001, and the models chose, on average, 5 predictors. The

predictors chosen along with the estimated standardized coefficients (ESC) align with

DGRA results more so than GRA results, though (with MLR, based on the ESC) the

rankings themselves are not the same. These results are presented Tables 6.4.1 and

6.4.2 in the Appendix. A similar pattern is observed for other sites.

Though we know through literature and logic that economic variables may

impact air pollution data, the results in this study do not indicate such a conclusion.

Further, CCA provides a result that is corroborated by literature (See Chapter 4

literature review and discussion). Given the robust usefulness of the method and

multivariate statistical basis, the method proved to be reliable within the context of

this study. Looking at other methodologies’ results, Canonical Correlation Analysis
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leads us to a different conclusion than both grey relational analysis and dynamic grey

relational analysis, though the conclusion is more similar to DGRA results. This is

similar to the result of using MLR, as discussed previously. In any case, economic

variables are low-ranks in the DGRA results and do not account for many variations-

in both grey relational grades and the CCA model. Similarly, multiple regression chose

similar factors to DGRA, rather than GRA. Thus, there is reason to recommend the

use of DGRA over GRA because of its similarity in results. However, caution is still

recommended because of the sensitive nature of DGRA to preprocessing methods and

a lack of formal methodology to accompany the choice of preprocessing techniques.

Extraneous factors to consider include the fact that though the sites are located in

suburban locations, the locations themselves are in a rural state where these economic

variables may not be as prolific as if the data were taken from a larger, active city with

both a larger workforce and a higher population.

5.2. Future work

While this study provides valuable insights into the interplay between air

pollution, economic variables, and weather patterns using GRA and DGRA, several

limitations and avenues for future research warrant consideration. Firstly, the study

would benefit from incorporating a broader range of pollutant data, economic factors,

and weather variables to comprehensively understand their interactions. An example of

this may be investigating more criteria pollutants such as PM2.5, Pb, and CO as well as

expanding types of factors considered. To further the economic portion of this study,

factors that could be included are Propane, Electricity Net generation, geothermal

energy, and CO2 emissions across the nation. Additionally, integrating a public health

aspect into the study could offer valuable insights into the health implications of air

pollution and inform targeted interventions. An example of this may be asthma
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diagnostics in vulnerable populations. A downfall of this, however, is the availability of

data. Moreover, future work should clarify the extent of the limitations extending into

method validity. Namely, what constitutes ”too large” or ”too enormous” (J. T. Huang

& Liao, 2003) within a data set, and exactly how normalization and standardization

affect grey relational orderings, especially considering the methods’ use in sensitive

topics, such as healthcare (Ouali, 2022; Javed et al., 2022). Further research is also

needed to explore the suitability of different normalization and standardization

methods for various types of data; what is best used? How do we corroborate results if

differing methods of normalization present converse orderings? Assessing alternative

methods alongside GRA and DGRA could also shed light on the most suitable

approach for analyzing complex relationships among environmental, economic, and

health variables. Overall, addressing these limitations and pursuing future research

avenues will enhance the effectiveness and applicability of GRA and DGRA in

analyzing the multifaceted dynamics of air pollution and its impacts on society.

5.3. Conclusion

In conclusion, this thesis has delved into the intricate relationships among air

pollution, economic factors, weather variables, and their impact on civilization through

the lens of Grey Relational Analysis, Dynamic Grey Relational Analysis, and

Canonical Correlation Analysis. By employing these advanced analytical techniques,

we have gained valuable insights into the complex interplay between these factors,

shedding light on their nuanced relationships and implications for societal well-being.

The Grey Relational Analysis methodology uncovered inconsistencies in relational

rankings across standardization methods, indicating sensitivity to preprocessing.

Notably, correlated variables for nitrogen dioxide included average temperature,

precipitation, and economic activities at specific sites. Conversely, for sulfur dioxide,
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economic variables consistently rank high, with precipitation being the only other

significant factor. Ozone results mirrored NO2 to some extent, with average

temperature consistently correlated but other rankings varied greatly. On the other

hand, Dynamic Grey Relational Analysis (DGRA) shows consistent relational rankings

across standardization methods, suggesting lesser sensitivity to preprocessing. Weather

variables, particularly average wind speed, and temperature emerge as the most

correlated factors for all pollutants, while economic variables have minimal impact.

Lastly, Canonical Correlation Analysis reveals site-specific correlated factors, with

weather variables like wind speed and precipitation consistently prominent across sites,

alongside varying economic factors. While GRA demonstrated sensitivity to

preprocessing, DGRA provides more stable rankings, and CCA highlights site-specific

correlated factors. However, it is essential to acknowledge the limitations of this study,

including the need for more comprehensive pollutant, economic, and weather data, as

well as the necessity to integrate a public health perspective. Future research

endeavors should also address the challenges posed by specific conditions required by

GRA, explore alternative normalization and standardization methods, and assess the

effectiveness of various analytical approaches. Moreover, based on our findings, we

recommend the adoption of Dynamic Grey Relational Analysis over GRA due to its

flexibility and ability to accommodate diverse datasets without extensive

preprocessing, and the closeness of results to CCA, given the multivariate nature of

CCA and the unique perspective CCA gives. Overall, this study contributes to our

understanding of the complex dynamics shaping air quality, economic development,

and societal well-being, paving the way for informed decision-making and proactive

interventions toward a healthy future.
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Appendix

A: GRA Results

Table 5.3.1. SO2 GRA Complete Results

SO2 GRA RESULTS

Site 5 Site 67 Site 3002

GRG (γ) with IVP RANK GRG (γ) with IVP RANK GRG (γ) with IVP RANK

TTU 0.8926 1 P (in) 0.8836 1 M 0.9392 1

MLC 0.8836 2 M 0.8787 2 TTU 0.9338 2

P (in) 0.8594 3 TTU 0.8665 3 P (in) 0.9290 3

M 0.8023 4 MLC 0.8572 4 MLC 0.9197 4

AWS (mph) 0.7227 5 AWS (mph) 0.8020 5 AWS (mph) 0.7573 5

PWD 0.7189 6 PWD 0.7912 6 PWD 0.6357 6

AT (F) 0.5721 7 AT (F) 0.7388 7 AT (F) 0.5813 7

MRH (%) 0.4625 8 MRH (%) 0.6207 8 MRH (%) 0.5017 8

GRG (γ) with MVP RANK GRG (γ) with MVP RANK GRG (γ) with MVP RANK

SO2 0.0000 SO2 1.0000 SO2 1.0000

TTU 0.8985 1 P (in) 0.8836 1 M 0.9407 1

M 0.8976 2 TTU 0.8814 2 TTU 0.9393 2

MLC 0.8916 3 M 0.8813 3 MLC 0.9353 3

P (in) 0.8844 4 MLC 0.8809 4 P (in) 0.9059 4

AWS (mph) 0.7539 5 AWS (mph) 0.8042 5 AWS (mph) 0.7196 5

PWD 0.7136 6 PWD 0.7490 6 PWD 0.6446 6

AT (F) 0.6316 7 AT (F) 0.7388 7 AT (F) 0.4922 7

MRH (%) 0.5266 8 MRH (%) 0.6207 8 MRH (%) 0.4110 8
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Table 5.3.2. O3 GRA Complete Results

O3 GRA RESULTS

Site 5 Site 67 Site 3002

GRG (γ) with IVP RANK GRG (γ) with IVP RANK GRG (γ) with IVP RANK

AT (F) 0.7884 1 AT (F) 0.8753 1 AT (F) 0.8374 1

AWS (mph) 0.7480 2 PWD 0.7977 2 MRH (%) 0.7932 2

PWD 0.7407 3 MRH (%) 0.7968 3 P (in) 0.7190 3

MRH (%) 0.7396 4 AWS (mph) 0.7952 4 M 0.7053 4

MLC 0.7088 5 M 0.7899 5 TTU 0.7031 5

TTU 0.7038 6 P (in) 0.7857 6 MLC 0.6975 6

M 0.6450 7 TTU 0.7826 7 AWS (mph) 0.6599 7

P (in) 0.6329 8 MLC 0.7769 8 PWD 0.6198 8

GRG (γ) with MVP RANK GRG (γ) with MVP RANK GRG (γ) with MVP RANK

AT (F) 0.8136 1 AT (F) 0.8753 1 AT (F) 0.8007 1

MRH (%) 0.7696 2 AWS (mph) 0.7985 2 MRH (%) 0.7492 2

AWS (mph) 0.7319 3 MRH (%) 0.7968 3 AWS (mph) 0.6734 3

M 0.7180 4 MLC 0.7916 4 P (in) 0.6644 4

MLC 0.7175 5 TTU 0.7915 5 MLC 0.6603 5

TTU 0.7170 6 M 0.7914 6 M 0.6602 6

PWD 0.6754 7 P (in) 0.7857 7 TTU 0.6602 7

P (in) 0.6706 8 PWD 0.7600 8 PWD 0.6506 8
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Table 5.3.3. NO2 GRA Complete Results

NO2 GRA RESULTS

Site 5 Site 67 Site 3002

GRG (γ) with IVP RANK GRG (γ) with IVP RANK GRG (γ) with IVP RANK

AWS (mph) 0.7639 1 AT (F) 0.8039 1 AT (F) 0.7706 1

MLC 0.7533 2 P (in) 0.7493 2 MRH (%) 0.7000 2

TTU 0.7466 3 AWS (mph) 0.7389 3 P (in) 0.7883 3

PWD 0.7391 4 PWD 0.7384 4 PWD 0.6430 4

P (in) 0.7317 5 M 0.7319 5 AWS (mph) 0.7128 5

AT (F) 0.7142 6 TTU 0.7228 6 MLC 0.7577 6

M 0.6741 7 MRH (%) 0.7164 7 M 0.7670 7

MRH (%) 0.5987 8 MLC 0.7159 8 TTU 0.7644 8

GRG (γ) with MVP RANK GRG (γ) with MVP RANK GRG (γ) with MVP RANK

P (in) 0.7645 1 AT (F) 0.8039 1 P (in) 0.7404 1

MLC 0.7554 2 P (in) 0.7493 2 AWS (mph) 0.7319 2

AWS (mph) 0.7552 3 AWS (mph) 0.7429 3 MLC 0.7295 3

TTU 0.7549 4 MLC 0.7340 4 TTU 0.7292 4

M 0.7548 5 TTU 0.7338 5 M 0.7291 5

AT (F) 0.7481 6 M 0.7338 6 AT (F) 0.7201 6

PWD 0.6805 7 MRH (%) 0.7164 7 PWD 0.6854 7

MRH (%) 0.6407 8 PWD 0.6947 8 MRH (%) 0.6405 8
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B: DGRA Results

Table 5.3.4. NO2 DGRA Complete Results

NO2 DGRA RESULTS

Site 5 Site 67 Site 3002

ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK

1.0000 AWS (mph) 0.8564 1 0.9965 AT (F) 0.8857 1 1.0000 AWS (mph) 0.8233 1

0.4511 PWD 0.7211 2 1.0000 MRH (%) 0.8301 2 0.4916 AT (F) 0.7678 2

0.4375 AT (F) 0.6885 3 0.4536 AWS (mph) 0.7218 3 0.9357 PWD 0.7583 3

0.6276 MRH (%) 0.6498 4 0.2594 PWD 0.6119 4 0.6531 MRH (%) 0.7502 4

0.0386 P (in) 0.2144 5 0.0184 P (in) 0.1362 5 0.0441 P (in) 0.3005 5

0.0332 MLC 0.2099 6 0.0176 MLC 0.0995 6 0.0213 M 0.1542 6

0.0275 TTU 0.1744 7 0.0129 TTU 0.0805 7 0.0170 TTU 0.1264 7

0.0359 M 0.1407 8 0.0101 M 0.0719 8 0.0172 MLC 0.1213 8

ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK

1.0000 AWS (mph) 0.8499 1 0.9965 AT (F) 0.8857 1 1.0000 AWS (mph) 0.8349 1

0.3833 AT (F) 0.6989 2 1.0000 MRH (%) 0.8301 2 0.8367 PWD 0.7730 2

0.5494 PWD 0.6986 3 0.4484 AWS (mph) 0.7239 3 0.5800 AT (F) 0.7455 3

0.5498 MRH (%) 0.6615 4 0.3017 PWD 0.5911 4 0.7705 MRH (%) 0.7263 4

0.0338 P (in) 0.2222 5 0.0184 P (in) 0.1362 5 0.0520 P (in) 0.2772 5

0.0305 MLC 0.1869 6 0.0169 MLC 0.1113 6 0.0246 M 0.1494 6

0.0292 M 0.1783 7 0.0126 TTU 0.0871 7 0.0195 MLC 0.1259 7

0.0251 TTU 0.1620 8 0.0100 M 0.0733 8 0.0195 TTU 0.1249 8
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Table 5.3.5. SO2 DGRA Complete Results

SO2 DGRA RESULTS

Site 5 Site 67 Site 3002

ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK

1.0000 AWS (mph) 0.8302 1 0.9965 AT (F) 0.8451 1 0.9934 AWS (mph) 0.8523 1

0.4511 PWD 0.7005 2 0.4536 AWS (mph) 0.7879 2 0.9511 PWD 0.7513 2

0.4375 AT (F) 0.5412 3 1.0000 MRH (%) 0.7638 3 0.0451 P (in) 0.6860 3

0.6276 MRH (%) 0.5177 4 0.2594 PWD 0.6778 4 0.5010 AT (F) 0.5816 4

0.0386 P (in) 0.4693 5 0.0184 P (in) 0.3173 5 0.6650 MRH (%) 0.5714 5

0.0275 TTU 0.4413 6 0.0176 MLC 0.2321 6 0.0216 M 0.4869 6

0.0332 MLC 0.4412 7 0.0129 TTU 0.1998 7 0.0172 TTU 0.4114 7

0.0359 M 0.2753 8 0.0101 M 0.1994 8 0.0175 MLC 0.3595 8

ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK

1.0000 AWS (mph) 0.8514 1 0.9965 AT (F) 0.8451 1 1.0000 AWS (mph) 0.8245 1

0.5494 PWD 0.7303 2 0.4484 AWS (mph) 0.7885 2 0.8598 PWD 0.7371 2

0.3833 AT (F) 0.5716 3 1.0000 MRH (%) 0.7638 3 0.0533 P (in) 0.6499 3

0.5498 MRH (%) 0.5496 4 0.3017 PWD 0.6525 4 0.0250 M 0.5358 4

0.0338 P (in) 0.4916 5 0.0184 P (in) 0.3173 5 0.5930 AT (F) 0.5354 5

0.0305 MLC 0.4576 6 0.0169 MLC 0.2995 6 0.7872 MRH (%) 0.5257 6

0.0292 M 0.4576 7 0.0126 TTU 0.2486 7 0.0198 TTU 0.4793 7

0.0251 TTU 0.4438 8 0.0100 M 0.2070 8 0.0199 MLC 0.4551 8
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Table 5.3.6. O3 DGRA Complete Results

O3 DGRA RESULTS

Site 5 Site 67 Site 3002

ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK ξ GRG (γ) with IVP RANK

1.0000 AWS (mph) 0.8458 1 1.0000 AT (F) 0.9023 1 0.4916 AT (F) 0.8262 1

0.4375 AT (F) 0.7672 2 0.4552 AWS (mph) 0.7132 2 1.0000 AWS (mph) 0.7880 2

0.4511 PWD 0.7224 3 0.4083 MRH (%) 0.6963 3 0.7418 P (in) 0.7845 3

0.6616 P (in) 0.6937 4 0.2968 P (in) 0.6026 4 0.9357 PWD 0.7381 4

0.0726 MRH (%) 0.3268 5 0.2603 PWD 0.6015 5 0.1328 MRH (%) 0.5318 5

0.0332 MLC 0.1529 6 0.0177 MLC 0.0869 6 0.0213 M 0.1128 6

0.0275 TTU 0.1289 7 0.0130 TTU 0.0681 7 0.0170 TTU 0.0922 7

0.0359 M 0.1229 8 0.0101 M 0.0580 8 0.0172 MLC 0.0887 8

ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK ξ GRG (γ) with MVP RANK

1.0000 AWS (mph) 0.8349 1 1.0000 AT (F) 0.9023 1 0.5800 AT (F) 0.8158 1

0.3833 AT (F) 0.7735 2 0.4500 AWS (mph) 0.7154 2 1.0000 AWS (mph) 0.7935 2

0.5796 P (in) 0.7017 3 0.4083 MRH (%) 0.6963 3 0.8752 P (in) 0.7694 3

0.5494 PWD 0.6939 4 0.2968 P (in) 0.6026 4 0.8367 PWD 0.7428 4

0.0636 MRH (%) 0.3343 5 0.3027 PWD 0.5808 5 0.1567 MRH (%) 0.5057 5

0.0305 MLC 0.1451 6 0.0170 MLC 0.0930 6 0.0246 M 0.1028 6

0.0292 M 0.1448 7 0.0127 TTU 0.0720 7 0.0195 MLC 0.0845 7

0.0251 TTU 0.1220 8 0.0101 M 0.0584 8 0.0195 TTU 0.0843 8
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C: CCA Results

5.3.1. Site 5

5.3.1.1. Economic Results

Table 5.3.7. Canonical Solution for Economic Variables Predicting Pol-
lutant Levels for Function 1 at Site 5

Function 1

Variable Coef rs r2s(%) h2(%)
MLC 0.9414 0.1401 1.9624 1.9624
M -0.9200 -0.0074 0.0055 0.0055

TTU -1.3723 -0.0282 0.0795 0.0795
O3 0.2827 0.0441 0.1946 6.1830
NO2 -0.5815 -0.0244 0.0595 1.8898

SO2 1.0023 0.1504 2.2623 71.8743

Table 5.3.8. Canonical Correlations

Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.1774 0.0315

2 0.1455 0.0212

3 0.0309 0.0010

Table 5.3.9. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.9471 1.9054 9.0000 759.4766 0.0482

2 to 3 0.9779 1.7594 4.0000 626.0000 0.1354

3 to 3 0.9990 0.3000 1.0000 314.0000 0.5843

Table 5.3.10. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

MLC 0.9414 -0.3473 0.4454

M -0.9200 -0.7983 2.3271

TTU -1.3723 -1.5151 1.5990
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Table 5.3.11. Correlations Between Dependent and Canonical Variables

Function No.

Variable 1 2 3

MLC 0.1401 -0.0880 0.0032

M -0.0074 0.1081 0.0206

TTU -0.0282 -0.1328 -0.0116

Table 5.3.12. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 0.2827 0.7740 0.6767

NO2 -0.5815 -0.7672 0.5741

SO2 1.0023 -0.3514 -0.1054

Table 5.3.13. Correlations Between Covariates and Canonical Variables

Canonical Variable

Covariate 1 2 3

O3 0.04411 0.06584 0.02646

NO2 -0.02439 -0.09066 0.02379

SO2 0.15041 -0.07116 0.00634

5.3.1.2. Weather Results

Table 5.3.14. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.5320 0.2830

2 0.3322 0.1104

3 0.2527 0.0639
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Table 5.3.15. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.5971 11.7219 15 856.1749 0.0000

2 to 3 0.8328 7.4481 8 622.0000 0.0000

3 to 3 0.9361 7.0945 3 312.0000 0.0001

Table 5.3.16. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT 0.2125 0.5784 -0.4071

MRH 0.3444 0.0413 0.5348

P 0.3679 0.0207 0.5416

PWD 0.2362 -0.8712 -0.2498

AWS 0.8194 0.2914 -0.1306

Table 5.3.17. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT 0.1042 0.1783 -0.1191

MRH 0.0287 -0.0214 0.1756

P 0.2559 0.0410 0.1412

PWD 0.2209 -0.2569 -0.0939

AWS 0.4316 0.0184 -0.0793

Table 5.3.18. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.4375 0.1805 -0.9555

NO2 -0.4710 -0.9225 0.4284

SO2 -0.4722 0.8503 0.4396
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Table 5.3.19. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.3603 0.0014 -0.1859

NO2 -0.4174 -0.1881 0.0638

SO2 -0.3764 0.1863 0.1087
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5.3.1.3. Weather and Economic Results

Table 5.3.20. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.5448 0.2968

2 0.4082 0.1666

3 0.3512 0.1234

Table 5.3.21. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.5137 9.5837 24 890.9946 0.0000E+00

2 to 3 0.7306 7.4775 14 616 1.3545E-14

3 to 3 0.8766 7.2473 6 309 2.9706E-07

Table 5.3.22. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT 0.1227 0.5372 0.3182

MRH 0.5068 -0.8599 0.4657

P 0.3636 -0.1357 0.1582

PWD 0.2543 -0.1091 -0.8033

AWS 0.8235 0.1355 0.3267

MLC -0.1554 -0.0417 0.4150

M -0.2574 -0.2032 -0.1902

TTU 0.0578 -1.1266 -0.0484
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Table 5.3.23. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT 0.0755 0.2016 0.1024

MRH 0.0488 -0.1595 0.0657

P 0.2650 -0.0698 0.1096

PWD 0.2308 -0.0094 -0.2651

AWS 0.4177 0.1352 -0.0111

MLC -0.0920 -0.0426 0.1307

M 0.0088 0.1022 -0.0407

TTU -0.0034 -0.1357 0.0123

Table 5.3.24. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.5496 0.8603 -0.3078

NO2 -0.3432 -0.8701 -0.6177

SO2 -0.4935 -0.0468 0.9453

Table 5.3.25. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.4081 0.2260 -0.1277

NO2 -0.3829 -0.2411 -0.1392

SO2 -0.3831 -0.0840 0.2390

5.3.2. Site 67

5.3.2.1. Economic Results
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Table 5.3.26. Canonical Solution for Economic Variables Predicting
Pollutant Levels for Functions 1, 2, and 3 at Site 67

Function 1

Variable Coef rs r2s(%) h2(%)
MLC -0.9484 -0.2037 4.1493 4.1493
M -0.9005 -0.2371 5.6227 5.6227

TTU 0.7183 -0.1879 3.5291 3.5291

O3 -0.1140 -0.0791 0.6256 0.6256
NO2 -0.0943 -0.0823 0.6781 0.6781
SO2 -0.9528 -0.2676 7.1630 7.1630

Table 5.3.27. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.2718 0.0739

2 0.1667 0.0278

3 0.0205 0.0004

Table 5.3.28. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.9000 3.6608 9 744.8742 0.0002

2 to 3 0.9718 2.2111 4 614.0000 0.0664

3 to 3 0.9996 0.1291 1 308.0000 0.7197

Table 5.3.29. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

MLC -0.9484 1.3666 -1.1978

M -0.9005 0.6298 0.8222

TTU 0.7183 -2.2768 0.2611

Table 5.3.30. Correlations Between Dependent and Canonical Variables

Function No.

Variable 1 2 3

MLC -0.2037 -0.0507 -0.0120

M -0.2371 -0.0376 0.0089

TTU -0.1879 -0.1140 -0.0048
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Table 5.3.31. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.1140 1.1042 0.1038

NO2 -0.0943 -0.3894 -1.0451

SO2 -0.9528 -0.2065 0.2909

Table 5.3.32. Correlations Between Covariates and Canonical Variables

Canonical Variable

Covariate 1 2 3

O3 -0.0791 0.1508 -0.0064

NO2 -0.0823 0.0097 -0.0195

SO2 -0.2676 -0.0190 0.0027

5.3.2.2. Weather Results

Table 5.3.33. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.6090 0.3708

2 0.4481 0.2008

3 0.2765 0.0764

Table 5.3.34. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.4644 17.9281 15 839.6115 0.0000E+00

2 to 3 0.7381 12.5029 8 610.0000 1.1102E-16

3 to 3 0.9236 8.4432 3 306.0000 2.0855E-05
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Table 5.3.35. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT 0.1066 -0.9594 -0.1214

MRH 0.0708 0.3043 -0.7194

P 0.3814 0.1713 0.5359

PWD -0.2224 0.1833 -0.5180

AWS 0.8016 0.1401 -0.6566

Table 5.3.36. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT 0.0887 -0.4090 -0.0681

MRH -0.1408 0.1243 -0.1215

P 0.4043 0.0894 0.0813

PWD -0.0939 0.0108 -0.1783

AWS 0.5419 0.0039 -0.0684

Table 5.3.37. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.5363 -0.7041 0.6780

NO2 -0.6459 0.7754 -0.4841

SO2 0.0208 -0.6458 -0.7859

Table 5.3.38. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.4965 -0.2051 0.0980

NO2 -0.5338 0.1614 -0.0883

SO2 -0.0995 -0.2764 -0.2129

5.3.2.3. Weather and Economic Results
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Table 5.3.39. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.6150 0.3782

2 0.4733 0.2240

3 0.3390 0.1149

Table 5.3.40. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.4271 12.4099 24 873.5928 0.0000E+00

2 to 3 0.6868 8.9167 14 604.0000 0.0000E+00

3 to 3 0.8851 6.5574 6 303.0000 1.5860E-06

Table 5.3.41. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT 0.1001 0.9016 -0.1759

MRH 0.0765 -0.2161 0.5957

P 0.3753 -0.1825 -0.3345

PWD -0.2318 -0.1128 0.4780

AWS 0.7824 0.0060 0.5500

MLC -0.2231 0.3143 -0.0328

M -0.1689 0.1746 0.2296

TTU 0.2722 -0.0707 0.3783

Table 5.3.42. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT 0.0662 0.4181 -0.0251

MRH -0.1379 -0.1012 0.1441

P 0.4104 -0.0831 -0.0518

PWD -0.0985 0.0246 0.1744

AWS 0.5392 0.0414 0.0769

MLC -0.0601 0.1261 0.1572

M -0.0639 0.1673 0.1601

TTU -0.0149 0.0983 0.1960
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Table 5.3.43. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.5504 0.5022 -0.8294

NO2 -0.6206 -0.6803 0.6362

SO2 -0.0343 0.8067 0.6189

Table 5.3.44. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.5081 0.1516 -0.1571

NO2 -0.5329 -0.1545 0.1280

SO2 -0.1331 0.3620 0.2057

5.3.3. Site 3002

5.3.3.1. Economic Results

Table 5.3.45. Canonical Solution for Economic Variables Predicting
Pollutant Levels for Functions 1, 2, and 3 at Site 3002

Function 1 Function 2

Variable Coef rs r2s(%) Coef rs r2s(%) h2(%)
MLC 0.0663 0.0663 0.4401 0.4172 -0.1277 1.6308 2.0709
M -0.0176 -0.0176 0.0309 1.2376 -0.1229 1.5094 1.5402

TTU 0.0024 0.0024 0.0006 -2.4977 -0.1452 2.1080 2.1086
O3 -0.2310 0.0173 0.0298 0.7337 0.1270 1.6134 1.6432
NO2 1.0692 0.1855 3.4426 -0.1199 0.0410 0.1681 3.6107

SO2 -0.1284 0.0157 0.0246 0.6114 0.1129 1.2755 1.3001

Table 5.3.46. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.1924 0.0370

2 0.1573 0.0248

3 0.0730 0.0053
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Table 5.3.47. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.9341 2.5872 9 820.3201 0.0061

2 to 3 0.9700 2.5893 4 676.0000 0.0358

3 to 3 0.9947 1.8176 1 339.0000 0.1785

Table 5.3.48. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

MLC 2.6297 0.4172 0.9160

M -1.1955 1.2376 3.0056

TTU -1.3014 -2.4977 -3.3489

Table 5.3.49. Correlations Between Dependent and Canonical Variables

Function No.

Variable 1 2 3

MLC 0.0663 -0.1277 0.0344

M -0.0176 -0.1229 0.0451

TTU 0.0024 -0.1452 0.0281

Table 5.3.50. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.2310 0.7337 0.7345

NO2 1.0692 -0.1199 0.0016

SO2 -0.1284 0.6114 -0.8267

Table 5.3.51. Correlations Between Covariates and Canonical Variables

Canonical Variable

Covariate 1 2 3

O3 0.0173 0.1270 0.0426

NO2 0.1855 0.0410 0.0031

SO2 0.0157 0.1129 -0.0505
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5.3.3.2. Weather Results

Table 5.3.52. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.5780 0.3341

2 0.3424 0.1172

3 0.1077 0.0116

Table 5.3.53. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.5810 13.4071 15 925.189 0.000E+00

2 to 3 0.8725 5.9258 8 672.000 2.364E-07

3 to 3 0.9884 1.3182 3 337.000 2.683E-01

Table 5.3.54. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT -0.0943 0.9346 0.0492

MRH 0.6966 -0.2269 0.1935

P 0.3379 -0.0184 -0.5281

PWD -0.1373 -0.0676 -0.9060

AWS 0.6157 0.6531 0.0701

Table 5.3.55. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT -0.1222 0.2442 -0.0049

MRH 0.3739 -0.0927 0.0045

P 0.3153 0.0005 -0.0442

PWD -0.0870 0.0042 -0.0926

AWS 0.3047 0.1430 -0.0023
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Table 5.3.56. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.9138 0.4599 0.2910

NO2 -0.1579 -1.0636 0.0380

SO2 -0.0936 0.1768 -1.0167

Table 5.3.57. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.5675 0.0513 0.0125

NO2 -0.2741 -0.2991 -0.0117

SO2 -0.1727 0.0035 -0.1028

5.3.3.3. Weather and Economic Results

Table 5.3.58. Canonical Correlations

Root No. Canonical Correlation Squared Correlation

1 0.6093 0.3713

2 0.3635 0.1321

3 0.1504 0.0226

Table 5.3.59. Dimension Reduction Analysis- Wilks’ Lambda, using F-
Approximation (Rao’s F)

Roots Wilks λ F Hypothesis DF Error DF Significance of F

1 to 3 0.5333 9.7168 24 963.5022 0.0000E+00

2 to 3 0.8483 4.0801 14 666.0000 7.7090E-07

3 to 3 0.9774 1.2892 6 334.0000 0.2615

93



Table 5.3.60. Standardized Canonical Coefficients for Dependent Variables

Function No.

Variable 1 2 3

AT -0.1756 0.8490 0.0213

MRH 0.8066 -0.1882 -0.1167

P 0.2776 -0.0627 -0.2052

PWD -0.1091 -0.0992 -0.6993

AWS 0.6047 0.5667 -0.0161

MLC -0.7883 -0.6217 0.2206

M -0.3556 0.8919 0.7782

TTU 0.8720 -0.2294 -0.2145

Table 5.3.61. Correlations Between Dependent and Canonical Variables
(Canonical Loadings)

Function No.

Variable 1 2 3

AT -0.1167 0.2461 -0.0203

MRH 0.3713 -0.0999 0.0231

P 0.3167 -0.0078 -0.0319

PWD -0.0833 0.0019 -0.0960

AWS 0.3076 0.1366 0.0033

MLC 0.0702 -0.0865 0.0974

M 0.0828 -0.0029 0.1028

TTU 0.1045 -0.0295 0.1004

Table 5.3.62. Standardized Canonical Coefficients for Covariates

Canonical Variable

Covariate 1 2 3

O3 -0.9140 0.4905 0.2350

NO2 -0.1822 -1.0574 0.0783

SO2 -0.0512 0.1333 -1.0263
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Table 5.3.63. Correlations Between Covariates and Canonical Variables
(Canonical Loadings)

Canonical Variable

Covariate 1 2 3

O3 -0.5984 0.0634 0.0108

NO2 -0.2977 -0.3155 -0.0133

SO2 -0.1597 -0.0095 -0.1451
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D: General Results

Table 5.3.64. Stepwise Regression, DGRA and GRA Result Comparison

Site 67 Stepwise Regression Results

NO2 SO2 O3

Predictors p-value ESC Predictors p-value ESC Predictors p-value ESC

AWS (mph) 2.7900E-09 -0.3475 AT (F) 7.1100E-07 0.2769 AWS (mph) 1.73E-15 -0.4830

AT (F) 2.2500E-05 -0.2152 M 7.3524E-02 0.1329 P (in) 0.00181 -0.1658

P (in) 4.7100E-05 -0.2146 P (in) 1.2830E-03 -0.1848 MRH (%) 0.00251 -0.1652

PWD 5.0300E-05 0.2021 PWD 1.0148E-01 0.0883 AT (F) 0.02578 0.1135

M 1.7300E-01 0.0924 TTU 9.0063E-01 0.0160

Site 67 GRA results

NO2 SO2 O3

GRG (g) with IVP RANK GRG (g) with IVP RANK GRG (g) with IVP RANK

AT (F) 0.8039 1 P (in) 0.8836 1 AT (F) 0.8753 1

P (in) 0.7493 2 M 0.8787 2 PWD 0.7977 2

AWS (mph) 0.7389 3 TTU 0.8665 3 MRH (%) 0.7968 3

PWD 0.7384 4 MLC 0.8572 4 AWS (mph) 0.7952 4

M 0.7319 5 AWS (mph) 0.8020 5 M 0.7899 5

TTU 0.7228 6 PWD 0.7912 6 P (in) 0.7857 6

MRH (%) 0.7164 7 AT (F) 0.7388 7 TTU 0.7826 7

MLC 0.7159 8 MRH (%) 0.6207 8 MLC 0.7769 8

Table 5.3.65. Continuation of Stepwise Regression, DGRA and GRA
Result Comparison

Site 67 DGRA results

NO2 SO2 O3

ξ GRG (g) with IVP RANK ξ GRG (g) with IVP RANK ξ GRG (g) with IVP RANK

0.9965 AT (F) 0.8857 1 0.9965 AT (F) 0.8451 1 1.0000 AT (F) 0.9023 1

1.0000 MRH (%) 0.8301 2 0.4536 AWS (mph) 0.7879 2 0.4552 AWS (mph) 0.7132 2

0.4536 AWS (mph) 0.7218 3 1.0000 MRH (%) 0.7638 3 0.4083 MRH (%) 0.6963 3

0.2594 PWD 0.6119 4 0.2594 PWD 0.6778 4 0.2968 P (in) 0.6026 4

0.0184 P (in) 0.1362 5 0.0184 P (in) 0.3173 5 0.2603 PWD 0.6015 5

0.0176 MLC 0.0995 6 0.0176 MLC 0.2321 6 0.0177 MLC 0.0869 6

0.0129 TTU 0.0805 7 0.0129 TTU 0.1998 7 0.0130 TTU 0.0681 7

0.0101 M 0.0719 8 0.0101 M 0.1994 8 0.0101 M 0.0580 8
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