A Contralateral Comparison of Beta-Band Oscillations in the Motor Cortex Following Blood Flow Restriction Training

SIERRA M. WASHINGTON¹, KASE J. PENNARTZ¹, ADAM C. AVALOS¹, CALVIN D. SMITH¹, LINDSAY K. RANKIN¹, ISABELLA E. ZAPATA¹, JORDYN M. WATSON¹, DAKOTA R. HARRIS¹, JOSHUA L. KELLER³, AMBER HARRIS-BOZER², MICHAEL J. LUERA¹

¹Human Performance Laboratory; Health and Human Performance; ²Behavioral Neuroscience and Psychophysiology Laboratory; Tarleton State University; Stephenville, TX; ³Integrative Laboratory of Exercise and Applied Physiology Department of Health, Kinesiology and Sport Exercise Science; University of South Alabama; Mobile, AL

Category: Masters

Advisor / Mentor: Luera, Michael (luera@tarleton.edu)

ABSTRACT

Contralateral adaptations following unilateral training is commonly associated with the cross-education phenomena. Identifying the contributions to peripheral activation of voluntary muscle contractions can be represented in Beta-band (13-30Hz) oscillations within the human motor cortex. These individualistic electrophysiological changes may display potential hemispheric differences that contribute to skeletal muscle activation patterns following single limb training common in rehabilitation settings. **PURPOSE**: The purpose of this investigation was to compare the responses of beta-band mean power frequency (MPF) in the motor cortex during varying isometric contraction intensities after blood flow restriction training. **METHODS**: 13 untrained males (age: 21.7 ± 1.7 yrs; height: 176.6 ± 5.2 cm; weight: 83.4 ± 12.4 kg) were randomly assigned to a BFR (n=8) and non-BFR (n=5) group. Both groups completed 8 isokinetic dorsiflexion training sessions separated by 48 hours at 30% of their session peak torque at a velocity of 60°/s. Pre and post isometric dorsiflexion trapezoidal ramp tracings were recorded at 25%, 50%, 75%, and 100% of their maximal voluntary contraction (MVC). A 64-channel electroencephalography (EEG) cap recorded neural activity during the isometric tracings. Signals were filtered to reject artifact and compute Fast Fourier Transforms. Separate 3-way mixed factorial ANOVAs (group [BFR v non-BFR] x time [pre v post] x location [C5 v C3 v C1 v C2 v C4 v C6]) were used to compare MPF values of the beta-band at all intensities. Additional ANOVAs (group [BFR v non-BFR] x time [pre v post] x leg [right v left] were used to compare the CZ location MPF values of the beta-band at all intensities. RESULTS: There were no significant group x time x location interactions or main effects for MPF at 25%, 50%, or 100% intensities, however there was a main effect for location at 75% (p = .045) (C5 [944.383 ± 150.647], C3 [834.815 ± 150.647], C1 [745.956 ± 150.647], C2 [1057.821 ± 150.647], C4 [1082.626 ± 150.647], C6 [1246.386 ± 150.647]; mean \pm SE). When comparing group x time x leg, there was a significant interaction at 25% (p = .049) and main effect on time at 75% (p = .030) (pre [755.646 ± 126.276], post [1052.475 ± 126.276]; mean ± SE). CONCLUSION: Beta-band oscillations are often linked with various cognitive and motor functions. These results support a presence of contra-lateralization of the motor cortex with voluntary muscle activation patterns of the tibialis anterior during isometric contractions.