Examining the Cardiovascular Response to Blood Flow-Restricted Resistance Exercise

1Jacob Jedry, 1Sarah Davison, 1Sarah Hess, 1Riley Goerner, 2Erin Moyer, 1Lindsay Jones, 1Ella McDonald, 1Emily Opfer, 1Michael E. Holmstrup, 1Brock T. Jensen. 1Slippery Rock University, Slippery Rock, PA. 2East Stroudsburg University, East Stroudsburg, PA.

Low-intensity, blood flow-restricted (BFR-LI) resistance training has become popular in rehabilitation and sport performance settings. BFR-LI protocols occlude venous return to an active muscle during repeated contractions, and have been reported to achieve similar strength and hypertrophy outcomes as high-intensity (i.e., high load) resistance training (HI) over time. While the outcomes seem promising, evidence regarding the expected cardiovascular response to these interventions is limited. PURPOSE: To determine the effect of an acute bout of BFR-LI, compared to traditional low-intensity (LI) and HI protocols, on blood pressure (BP) and hemodynamic variables in normotensive, college-aged males. METHODS: Apparently-healthy college-aged males were recruited. Participants completed a 3-5 repetition maximum (RM) test to estimate their 1RM on a leg extension machine. Participants randomly completed three volume-matched training sessions: 4 sets each of 1) HI- 70% 1RM for 8 reps; 2) LI- 35% 1RM for 16 reps, 3) BFR-LI- 35% 1RM with venous occlusion for 16 reps. Rapid-inflation cuffs were used to induce venous occlusion in the BFR-LI condition by inflating to a value halfway between systolic and diastolic BP. Sets were separated by 1-minute rest periods. Bilateral BP and non-invasive hemodynamic measures were taken pre-exercise, after each set, and 2 minutes post-exercise. A within-subjects, repeated-measures ANOVA was used to compare pertinent cardiovascular variables across conditions. RESULTS: Bilateral differences in SBP and DBP were not present (P>0.05). Expectedly, a time effect was observed in both SBP and DBP (P<0.05). No interactions (time X condition) were observed in SBP (P>0.05), however, interactions existed in both the right and left DBP (P<0.05). Participants reported that the BFR-LI condition required more exertion than the LI or HI conditions (P<0.05; RPE Set 4-LI Δ 2±1.37 and RPE Set 4-HI Δ 1.52±1.3, respectfully). There were no significant differences noted in the heart rate (P>0.05). CONCLUSION: Arm selection may not be critical when assessing blood pressure during blood flow restricted or traditional resistance training. With subsequent sets, the blood pressure response was remarkable. SIGNIFICANCE/NOVELTY: To our knowledge, this is the first investigation to report the simultaneous bilateral blood pressure response to acute exercise with blood flow restriction.