Responses of Serum Lipids and Lipoproteins Following Power-based Resistance Training in Athletes

CATHARINE WU, JOSH MILLER, ALLEN SEXTON, JASON FONDICK, and YUNSUK KOH

Department of Health and Kinesiology, Lamar University, Beaumont, TX 77710

ABSTRACT

Athletes often participate in power-based resistance training to improve their athletic performance by simultaneously enhancing strength and power. However, it is unclear whether athletes participating in power-based resistance training can positively alter serum lipid and lipoprotein profiles. Thus, the current study investigated the effects of power-based resistance training on serum lipid and lipoprotein profiles in athletes. Twenty-one healthy collegiate athletes, 12 female soccer players and 9 male football players, between the ages of 18 and 23, participated in the study during the off-season. The power-based resistance training program consisted of a variety of Olympic-style and traditional weightlifting movements along with plyometrics, and was performed for 4 days a week for 6 weeks, with each workout lasting roughly 60 minutes. One-repetition maximum (1-RM) was tested for clean, incline press, and Olympic-style back squat (angle of knee < 90°), and the following weekly undulating periodization was used: week 1 – 70% 1-RM, week 2 – 80% 1-RM, week 3 – 75% 1-RM, week 4 – 90% 1-RM, week 5 – 80% 1-RM, and week 6 – 95% 1-RM. Overnight fasting blood samples were collected before and after the 6-weeks of training to analyze serum lipid and lipoprotein parameters, including TG, TC, VLDL-C, LDL-C, HDL-C, Lp(a), and ox-LDL. A 2 (groups: males and females) X 2 (time: pre- and post-training) repeated measures ANOVA with pairwise comparisons was employed. A p-value of < 0.05 was set for the statistical significance. Serum lipid and lipoprotein parameters remained unchanged, except for ox-LDL, which significantly (p = 0.036) decreased by 1.87 U·L\(^{-1}\) or 3.81% (from 49.05 ± 9.17 to 47.18 ± 9.78 U·L\(^{-1}\)) following the 6-weeks of power-based resistance training. Thus, 6-weeks of power-based resistance training can significantly lower ox-LDL, and this exercise-induced reduction in ox-LDL may confer a cardioprotective health benefit by decreasing the progression of atherosclerotic events and the pro-inflammatory state within atherosclerotic lesions.