TACSM Abstract

Cerebral Vasomotor Reactivity: Impact of Hyperventilation Induced Hypocapnia on Hypercapnia Induced Vasodilation.

Kevin M. Christmas¹, Chansol Hurr¹, Kiyoung Kim¹, Joshua F. Lee¹, Rong Zhang², and R. Matthew Brothers¹.

¹Environmental and Autonomic Physiology Laboratory; University of Texas at Austin; Austin, TX.
²Institute for Exercise and Environmental Medicine; Texas Health Presbyterian Hospital Dallas; University of Texas Southwestern Medical Center at Dallas; Dallas, TX.

Category: Doctoral

Advisor / Mentor: Brothers, R. Matthew (r.m.brothers@austin.utexas.edu)

Cerebral vasomotor reactivity (CVMR; the relationship of cerebral blood flow responses to changes in arterial carbon dioxide (PCO2)) is used to assess cerebral vascular function. CVMR is generally assessed during either steady-state or transient breath-by-breath changes in PCO2. In the transient method, a brief period of hyperventilation hypocapnia is often followed by hypercapnic rebreathing to induce a wide range of change in PCO2 to assess the capacity of CVMR. Assessment of CVMR during transient changes in PCO2 has been reported to be about 30% lower than that under steady-state conditions. One possibility for this discrepancy is that cerebral vasoconstriction during hyperventilation immediately before rebreathing may attenuate cerebral vasodilation and thus, CBF responses during the subsequent hypercapnic rebreathing.

PURPOSE: To test the hypothesis that CVMR during rebreathing hypercapnia would be blunted when the rebreathing is preceded by a period of hyperventilation.

METHODS: End-tidal carbon dioxide (PETCO2), middle cerebral artery blood velocity (CBFV), cerebral vascular conductance (CVCi; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCi vs. PETCO2) were assessed in 8 healthy individuals. CVMR was assessed twice, once immediately following a brief period of hyperventilation (hyperventilation + rebreathe for 1 min + rebreathe 4 min) and once during rebreathing only (rebreath). The trials were counterbalanced and randomized with a minimum of 15 min elapsing between the protocols.

RESULTS: The slope of the linear regression for CBFV vs. PETCO2 was reduced during hyperventilation + rebreathe relative to rebreathe only (hyperventilation + rebreathe: 3.16 ± 0.97 % / Torr, R = 0.93 ± 0.05; rebreathe: 5.03 ± 1.11 % / Torr, R = 0.83 ± 0.25; P<0.01). Likewise, the slope of the linear regression for CVCi vs. PETCO2 was reduced during hyperventilation + rebreath (hyperventilation + rebreathe: 2.58 ± 0.89 % / Torr, R = 0.88 ± 0.09; rebreathe: 4.34 ± 1.07 % / Torr, R = 0.89 ± 0.08; P<0.01).

CONCLUSION: These results indicate that hyperventilation induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing induced hypercapnia.