TACSM Abstract

The Impact of Simulated Altitude on Selected Elements of Running Performance

Flowers TG\(^1\), Garver MJ\(^1\), Scheadler CM\(^2\), Taylor SJ\(^1\), Smith LM\(^1\), Harbach CM\(^1\), and Johnston HX\(^1\)

\(^1\)Human Performance Laboratory; Department of Kinesiology and Nutrition; Abilene Christian University; Abilene, TX
\(^2\)Human Performance Laboratory; Department of Kinesiology and Health; Northern Kentucky University; Highland Heights, KY

Category: Undergraduate

Advisor / Mentor: Garver, Matthew J. (mjg11a@acu.edu)

ABSTRACT

Background: Simulating altitude at sea level is increasingly more popular among recreationally-trained athletes across the sports spectrum. The AltO2Lab is a commercially-available, handheld, rebreathing apparatus purported to simulate altitude. Currently, there is an overall dearth of evidence regarding the efficacy of the device. **Purpose:** The goal of this study was to add evidence supporting or challenging the effectiveness of the device to improve selected running performance-related variables and to investigate the time-course of changes should benefits be evidenced. **Methods:** The 37-day protocol included familiarization, baseline, and 2 follow-up visits during which time hematological (hematocrit and lactate), physiological (running economy, maximal VO\(_2\), and heart rate), and psychological (Borg RPE) variables were monitored at rest, during relative submaximal, and/or maximal treadmill exercise. Altitude training days (18 days; one hour each day) were fitted within the 37-day time-line to occur after the baseline visit but before the respective follow-up visits. Specifically, the altitude training took place in 3, 6-day blocks of device usage with exposure, monitored by oximetry, intensifying across the days and blocks. Twelve days of altitude training were completed before the first follow-up visit while the final 6 days of altitude training were completed between the first and second follow-up visit. In this manner, the follow-ups could serve to evaluate the potential effectiveness of the device and narrow the time course of changes to a specific usage duration. **Results:** Six, recreationally-trained athletes (Females = 4; Males = 2; Age = 22.0 ± 2.9 yrs.; Baseline VO\(_{2\text{max}}\) 52.7 ± 6.7) enrolled in the study. One subject was removed due to noncompliance. Overall, simulated altitude at the prescribed, intensifying dosage, failed to change both hematocrit \((p = 0.469)\) and VO\(_{2\text{max}}\) \((p = 0.184)\) when analyzed by repeated measures analysis of variance. Additionally, no differences were found for secondary variables including; running economy, heart rate, lactate or RPE (all \(p > 0.05\)). **Conclusion:** Presently, the AltO2Lab failed to improve selected variables related to running performance. This finding is in contrast to previous investigations with the device but it does align with the knowledge that a stronger stimulus might be necessary to induce HIF-mediated erythropoiesis to the extent that the cascade could alter hematological and subsequently performance ability through enhanced oxygen-carrying capacity. These results are preliminary and a final cohort will complete testing before concluding results will be disseminated.