TACSM Abstract

The Effect of a High Fat Meal on Cerebral Vascular Function

JORDAN C. PATIK¹, WESLEY J. TUCKER², BRYON M. CURTIS¹, MICHAEL D. NELSON², and R. MATTHEW BROTHERS¹

¹Integrative Vascular Physiology Laboratory; Department of Kinesiology; The University of Texas at Arlington; Arlington, TX
²Applied Physiology and Advanced Imaging Laboratory; Department of Kinesiology; The University of Texas at Arlington; Arlington, TX

Category: Doctoral

Advisor / Mentor: Brothers, R. Matthew (matthew.brothers@uta.edu)

ABSTRACT

It is well known that a single high fat meal (HFM) causes a robust and transient elevation in serum triglycerides (TG). This elevation in serum TG is a primary contributor to the post-prandial attenuation of peripheral vascular endothelial function, as assessed by flow-mediated dilation in the brachial artery. Whether a similar impairment in vascular reactivity can be observed in the cerebral circulation remains unknown, and was the focus of this investigation. PURPOSE: To test the hypothesis that cerebral vascular function is impaired following a HFM. METHODS: End-tidal carbon dioxide partial pressure (PETCO₂), middle cerebral artery blood velocity (MCAVm), calculated cerebral vascular conductance index (CVCI; MCAVm/mean arterial pressure) and cerebral vasodilator response to rebreathing induced hypercapnia (% increase in CVC from baseline at common maximal ΔPETCO₂) were assessed in 6 healthy young men (27 ± 5 years). Measures were assessed during fasted baseline and again at 2 and 4 h post meal consumption (HFM day) or at a similar time point in the fasted state (TC day). The two visits were separated by 2-7 days and were conducted in a randomized order. Blood lipids were assessed at baseline and at the 2 h time point into each respective condition. RESULTS: As expected, consumption of the HFM significantly elevated serum TG concentrations relative to TC at 2 h (HFM: 101±38 to 169±77mg/dl, TC: 107±32 to 92±31mg/dl, P=0.007). However, the HFM had no effect of cerebral vasodilator capacity during rebreathing induced hypercapnia. The maximal increase in %CVC achieved at the highest common ΔPETCO₂ during all conditions within each subject was unchanged during 2hr and 4hr post HFM or TC (condition x time interaction: P=0.96). Similarly, the slope of the change in %CVC per change in ΔPETCO₂ was unaffected by HFM across time (P=0.49). CONCLUSION: Contrary to our hypothesis, and unlike the peripheral vasculature, our preliminary data suggest that the cerebral circulation appears to be protected from the acute negative effects of a high fat meal.