Abstract
International Journal of Exercise Science 10(8): 1145-1156, 2017. Previous studies have reported improved efficiency at steeper seat tube angle (STA) during ergometer cycling; however, neuromuscular mechanisms have yet to be fully determined. The current study investigated effects of STA on lower limb EMG activity at varying exercise intensities. Cyclists (n=11) were tested at 2 workloads; 160W and an individualised workload (IWL) equivalent to lactate threshold (TLac) minus 10%δ (derived from maximal incremental data), using 3 STA (70, 75 and 80°). Electromyographic data from Vastus Medialis (VM), Rectus Femoris (RF), Vastus Lateralis (VL) and Biceps Femoris (BF) were assessed. The timing and magnitude of activation were quantified and analysed using a two-way ANOVA. STA had significant (P < 0.05) effects on timing of onset and offset of VM, timing of offset of VL, and angle at peak for RF, all occurring later at 80 vs. 70° STA at IWL. In RF, increased activity occurred during the first 108° of the crank cycle at 80 vs. 70° at IWL (P < 0.01). As most of the power in the pedal stroke is generated during the mid-section of the down-stroke, movement of the activation range of knee extensors into the predominantly power phase of the pedal stroke would potentially account for increased efficiency and decreased cardio-respiratory costs. Greater activity of bi-articular RF, in the first 108º of the crank cycle at IWL (80 vs. 70º) may more closely resemble the pelvic stabilising activity of RF in running biomechanics; and potentially explain the more effective transition from cycling to running reported in triathletes using steeper STA.
Recommended Citation
Duggan, Will; Donne, Bernard; and Fleming, Neil
(2017)
"Effect of Seat Tube Angle and Exercise Intensity on Muscle Activity Patterns in Cyclists,"
International Journal of Exercise Science: Vol. 10
:
Iss.
8, Pages 1145 - 1156.
DOI: https://doi.org/10.70252/GCPA3105
Available at:
https://digitalcommons.wku.edu/ijes/vol10/iss8/5