Abstract
International Journal of Exercise Science 12(2): 483-490, 2019. The purpose of this study was to characterize the kinetics of cardio-respiratory parameters of elite male rowers during 2000m rowing time trial. 16 lightweight category (LWC) and 11 open category (OC) elite male rowers attending National camp were included in the study. Pulmonary gas exchange and heart rate (HR) during 2000m rowing ergometer test was determined through breath-by-breath analysis, with a portable metabolic gas analyzer and HR monitor. Time to completion, HR, oxygen uptake (V̇O2), minute ventilation (V̇E) and respiratory exchange ratio (RER) were recorded at 500m, 1000m, 1500m and 2000m intervals. No significant (p>0.05) difference was observed in the HR kinetics during 2000m rowing between the groups. However, split HR during the entire course was on the higher side in OC than LWC. Relative V̇O2 at 1000m (p<0.01), 1500m (p<0.05) and 2000m (p<0.01) was significantly less in OC rowers compared to LWC. However, V̇E was significantly higher for the OC group at 1500m (p<0.05) and 2000m (p<0.01) whereas RER was only significantly higher at 2000m (p<0.05). %change in absolute and relative V̇O2, V̇E and RER at each 500m interval showed no significant difference among the groups. OC rowers had taken significantly less time (p<0.05) to complete first 500m, 500m to 1000m and last 500m distance than LWC rowers. This detailed insight of rower’s physiological responses can help coaches and support staff to determine the physiological working capacity of rowers at different levels, predicting performance and provided normative ranges for developing a representative physiological profile of elite Indian rowers.
Recommended Citation
DAS, ARNAB; MANDAL, MALAY; SYAMAL, ALAK K.; and MAJUMDAR, PRALAY
(2019)
"Monitoring Changes of Cardio-Respiratory Parameters During 2000m Rowing Performance,"
International Journal of Exercise Science: Vol. 12
:
Iss.
2, Pages 483 - 490.
DOI: https://doi.org/10.70252/YJSX4918
Available at:
https://digitalcommons.wku.edu/ijes/vol12/iss2/13