•  
  •  
 

Abstract

International Journal of Exercise Science 13(1): 1098-1107, 2020. Currently, no gold standard electromyography (EMG) normalizing technique exists when conducting between-muscle comparisons of muscle activity during isotonic resistance training exercises. The aim of this study was to assess if between-muscle activation during the back-squat differed among electromyography (EMG) normalization techniques when normalizing to: (1) 1 repetition maximum (1RM), (2) maximal voluntary isometric contraction (MVIC), and (3) the first of a set of three repetitions (Rep1%) in trained female lifters. Thirteen participants completed a back-squat 1RM, MVIC of the rectus-femoris (RF) and gluteus-maximus (GM), and three repetitions of the back-squat at 80% 1RM. For the 1RM and MVIC normalization techniques, the average of the peak RMS signal of both muscles during the three submaximal reps were normalized to the peak 1RM and MVIC signals. The Rep1% averaged the peak RMS signals of both muscles during the 2nd and 3rd submaximal repetitions normalized to the peak signal during the 1st repetition. The RF-GM between-muscle EMG (ΔEMG) differed among normalization techniques (p < 0.001, ηp2 = 0.48). Post-hoc pairwise comparisons indicated MVIC normalization elicited different ΔEMG with large effects compared to both 1RM (p = 0.037; d = 1.2) and Rep1% (p = 0.004; d = 1.9) techniques, but the 1RM and Rep1% did not produce different ΔEMG (p = 0.27; d = 0.8). Our findings suggest EMG normalization technique influences the magnitude and direction of between-muscle activation during common lifting exercises, and we recommend normalizing isotonic movements to dynamic normalization methods such as a 1RM or Rep1%.

Share

COinS