Abstract
International Journal of Exercise Science 13(4): 1783-1793, 2020. Analysis of metabolic gas exchange and muscular output measures have enabled researchers to index activity intensity and energy expenditure for a myriad of exercises. However, there is no current research that investigates the physiological demands of riding electrically powered skateboards. The aim of this study was to measure the energetic cost and muscular trends of riding a novel electrically powered skateboard engineered to emulate snowboarding on dry-land. While riding the skateboard, eight participants (aged 21-37 years, 1 female) donned a portable breath-by-breath gas analyzer to measure energy expenditure (mean = 12.5, SD = 2 kcal/min), maximum heart rate (mean = 158, SD = 27 bpm), and metabolic equivalent (mean = 10.5, SD = 2 kcal/kg/h). By comparison, snowboarding has a metabolic equivalent (MET) of 8.0. Per the Compendium of Physical Activities guidelines, the predicted MET values for riding an electrically powered skateboard qualifies as vigorous-intensity activity. Four participants additionally wore a surface EMG embedded garment to record the percentage of maximum voluntary contraction (%MVC) of lower limb muscle groups. The inner quadriceps had the most pronounced mean peak muscle activation of 145%MVC during frontside and 164%MVC during frontside turns. EMG recordings showed 11.7%MVC higher utilization during backside turns compared to frontside turns while riding the electrically powered skateboard, which is similar to trends observed in alpine snowboarders. Therefore, electrically powered skateboards may be a promising technology for snowboarders and non-snowboarders alike to burn calories and increase physical activity year-round.
Recommended Citation
Robinson, Anthony J.; Carter, Robert P.; Browne, Jonathan D.; Hu, Jonathan; Arnold, Michael T.; Baum, Jaxon T.; Neufeld, Eric V.; and Dolezal, Brett A.
(2020)
"Energy Expenditure and Muscular Recruitment Patterns of Riding a Novel Electrically Powered Skateboard,"
International Journal of Exercise Science: Vol. 13
:
Iss.
4, Pages 1783 - 1793.
DOI: https://doi.org/10.70252/TWHF7333
Available at:
https://digitalcommons.wku.edu/ijes/vol13/iss4/39