Publication Date


Advisor(s) - Committee Chair

Dr. Jonathan Quiton (Director), Dr. Melanie Autin, Dr. Stuart Foster

Degree Program

Department of Mathematics and Computer Science

Degree Type

Master of Science


In this study, we use a hazard-based modeling as an alternative statistical framework to time series methods as applied to climate data. Data collected from the Kentucky Mesonet will be used to study the distributional properties of the duration of high and low-energy wind events relative to an arbitrary threshold. Our objectiveswere to fit bathtub models proposed in literature, propose a generalized bathtub model, apply these models to Kentucky Mesonet data, and make recommendations as to feasibility of wind power generation. Using two different thresholds (1.8 and 10 mph respectively), results show that the Hjorth bathtub model consistently performed better than all other models considered with coefficient of R-squared values at 0.95 or higher. However, fewer sites and months could be included in the analysis when we increased our threshold to 10 mph. Based on a 10 mph threshold, Bowling Green (FARM), Hopkinsville (PGHL), and Columbia (CMBA) posted the top 3 wind duration times in February of 2009. Further studies needed to establish long-term trends.


Climate | Numerical Analysis and Computation | Statistical Models