Publication Date


Advisor(s) - Committee Chair

Rezaul Mahmood (Director), Gregory Goodrich, Joshua Durkee, Xingang Fan

Degree Program

Department of Geography and Geology

Degree Type

Master of Science


The purpose of this research is to investigate mesoscale-equivalent temperatures (TE) in Kentucky and potential land cover influences. Kentucky presents a unique opportunity to perform a study of this kind because of the observational infrastructure provided by the Kentucky Mesonet ( This network maintains 65 research-grade, in-situ weather and climate observing stations across the Commonwealth. Equivalent temperatures were calculated utilizing high-quality observations from 33 of these stations. In addition, the Kentucky Mesonet offers higher spatial and temporal resolution than previous research on this topic. As expected, the differences (TE-T) were greatest in summer (smallest in winter), with an average of 35 ºC (5 ºC). In general, the differences were found to be largest in the western climate division. This is attributed to poorly drained land and the mesonet stations’ adjacency to agricultural land. These differences are smaller during periods of drought, signifying less influence of moisture. Additionally, an inverse relationship between TE and pressure deviation on a daily timescale was found, suggesting a synoptic influence on near-surface heat content.


Geographic Information Sciences | Geography | Physical and Environmental Geography