Publication Date

Spring 2017

Advisor(s) - Committee Chair

Nahid Gani (Director), Fred Siewers, and Jun Yan

Degree Program

Department of Geography and Geology

Degree Type

Master of Science


The Nepalese Himalaya, one of the most active regions within the Himalayan Mountain belt, is characterized by a thick succession of Miocene age Siwalik sedimentary rocks deposited at its foreland basin. To date, much of its tectonic evolution, including exhumation in the Nepalese Siwalik, is poorly understood. This study of a quantitative analysis of the bedrock river parameters should provide crucial information regarding tectonic activities in the area. The study investigated geomorphic parameters of river longitudinal profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya, for the first time. A total of 140 bedrock rivers from these watersheds were selected using stream power-law function and 30-meter resolution ASTER DEM. The quantitative data from the river longitudinal profiles were integrated with published exhumation ages. Results of this study show, first, a presence of major and minor knickpoints, with a total of 305 knickpoints identified, of which 180 were major knickpoints and the rest were minor knickpoints. Further classifications of knickpoints were based on structures (lineaments extracted from SRTM DEM), lithology, and possible uplift. Second, the Normalized Steepness index (ksn) values exhibited a range from 5.3 to 140.6. Third, the concavity index of streams in the study area ranged from as low as -12.1 to as high as 31.1 and the values were consistently higher upstream of the knickpoints. Finally, integration of the river profile data with the published exhumation ages show that the regions with a high ksn value correspond to the regions with higher incision and,

therefore, are likely to have high uplift. The presence of a break in ksn in the eastern section of the study area suggests that the incision is likely accelerated by Main Frontal Thrust (MFT) movements. Erosion of the thrust sheet could have influenced the rapid uplift of the Siwalik due to isostatic processes. Thus, the timing of the source-region exhumation and its rate suggests that MFT-related tectonics, and/or climate processes, likely influenced the landscape evolution of the study area. The results of this study should help in comprehending the neo-tectonic deformation of the Nepalese Himalaya.


Earth Sciences | Geophysics and Seismology