Publication Date

Fall 2018

Advisor(s) - Committee Chair

Scott Arnett (Director), Mark Schafer, and Lee Winchester

Degree Program

Department of Kinesiology, Recreation and Sport

Degree Type

Master of Science


Variable Resistance Training (VRT), loading elastic band tension on a barbell, has shown improvements in force, power, and velocity. Studied extensively in the squat and bench press, VRT is less researched in the context of the deadlift. Additionally, while no acute VRT deadlift studies exist where intensity was ≥ 90% 1- RM, some heavy VRT studies suggest that at approximately 90% 1-RM, less band tension (BT) is required to enhance force and power than seen at lower intensities in existing research. Therefore, the purpose of this study was to determine the effects of VRT on peak relative vertical ground reaction force (VGRF), average and peak velocity, and time of peak force (VGRF time), in heavy, traditional deadlifts. METHODS: Seven resistance trained, college-aged males were recruited for this study. Over the course of approximately eight weeks, subjects completed five training sessions including familiarization, and testing the deadlift at 90% 1-RM with no bands (NB), 10%BT, 20%BT, or 30%BT. All training sessions were performed on dual force plates and with a linear position transducer to determine kinetic and kinematic outcomes. RESULTS: There were significant differences between conditions for both peak [F (3,18) = 13.607, p < 0.001] and average velocity [F (3, 18) = 14.077, p < 0.001]. No significant differences were detected between conditions for peak relative VGRF [F (3, 12) = 2.41, p= 0.118], or

VGRF time [F (3, 12) = 1.843, p= 0.193]. PRACTICAL APPLICATIONS: The results of this study suggest velocity is improved with 20% to 30%BT when deadlifting approximately 90% 1-RM. For maximum force, traditional, NB deadlifts might be optimal considering the lack of improvement with the addition of bands. Despite the lack of significance between conditions, the large relative percent decrease in VGRF time from NB to 10%BT suggests that this small amount of BT may be advantageous for rapid force development with heavy loads


Biomechanics | Exercise Science | Kinesiology