Publication Date
Spring 2017
Advisor(s) - Committee Chair
Ferhan Atici (Director), Mark Robinson, and John Spraker
Degree Program
Department of Mathematics
Degree Type
Master of Science
Abstract
The main purpose of this thesis is to define the stability of a system of linear difference equations of the form,
∇y(t) = Ay(t),
and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem.
This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are discussed by using particular example.
In the second chapter, we focus on solving the linear difference equations by using the undetermined coefficient method and the variation of constants formula. Moreover, we establish the matrix exponential function which is the solution of the initial value problems (IVP) by the Putzer algorithm.
Disciplines
Applied Mathematics | Discrete Mathematics and Combinatorics | Partial Differential Equations
Recommended Citation
Er, Aynur, "Stability of Linear Difference Systems in Discrete and Fractional Calculus" (2017). Masters Theses & Specialist Projects. Paper 1946.
https://digitalcommons.wku.edu/theses/1946