Other Subject Area

Strength Training


International Journal of Exercise Science 14(4): 1247-1255, 2021. The primary purpose of this study is to examine the effect of two different deadlift barbell height positions on maximal isometric force and subsequent maximal squat jump performance in recreationally-trained men. Fifteen young, healthy, recreationally-trained men (age: 24.7 ± 3.5years, height: 177.1 ± 7.9cm, and total body mass: 81.2 ± 9.8kg) volunteered to participate. All participants performed maximal squat jumps (MSJ) at 90º of knee flexion before (pre-test) and after 4-min (post-test) performing the deadlift exercise using maximal isometric force (MIF) and MIF normalized by body mass (ratioMIF) in two barbell height positions (25% and 75% of the lower limb height, LLH) in a randomized and counterbalanced order. A paired-sample t-test was used to test differences in MIF and ratioMIF between 25% LLH and 75% LLH. Two-way ANOVAs were used for positions (25% LLH and 75% LLH) and time (pre- and post-test) for all dependent variables with an alpha of 5%. Differences were found for MIF and ratioMIF during the deadlift between 25% LLH and 75% LLH (p < 0.001). There was observed an increase in impulse between pre- and post-test only at 75% LLH (p < 0.001), decrease in time to peak force between pre- and post-test only at 75% LLH (p < 0.001), and increase in peak force between pre- and post-test at 75% LLH (p = 0.029). The present results showed that the maximal isometric deadlift exercise at 75% LLH (midthigh) improves subsequent jump performance of the squat jump recreationally-trained men.