•  
  •  
 

Other Subject Area

Athlete Monitoring

Abstract

International Journal of Exercise Science 15(6): 1457-1471, 2022. The purpose of this study was to determine whether changes in collegiate weightlifters’ external training load, biochemical markers, and jumping performance correlate to changes in items of the Short Recovery and Stress Scale (SRSS) throughout four microcycles. Twelve well-trained weightlifters (8 males, 4 females; age 24.30 ± 4.36 yr; height 170.28 ± 7.09 cm; body mass 81.73 ± 17.00 kg) with at least one year of competition experience participated in the study. Measurements included hydration, SRSS, biochemical analysis of blood (cortisol [C], creatine kinase [CK]), and unloaded and loaded squat jumps (SJ), and volume-load displacement. Pearson correlation coefficients were calculated between the changes in SRSS items and all other variables. The alpha criterion for all analyses was set at p ≤ 0.05. Negative relationships were observed between changes in SRSS recovery items and C (r = -0.608 to -0.723), and unloaded and loaded SJ height and peak power (r = -0.587 to -0.636). Positive relationships were observed between changes in several SRSS stress items and C (r = 0.609 to 0.723), CK (r = 0.922), and unloaded and loaded SJ height and peak power (r = 0.583 to 0.839). Relationships between changes in some SRSS items and cortisol agree with previous findings highlighting C as an indicator of training stress. Nonetheless, the non-significant relationships between changes in SRSS items, training volume and biochemical markers disagree with previous findings. This may partly be explained by the smaller undulations in training volume in the current study, which were characteristic of typical training. Further, relationships between changes in some SRSS items and jumping performance were opposite of what was expected indicating athletes’ perception of their stress and recovery state does not always correspond with their ability to perform.

Share

COinS