•  
  •  
 

Other Subject Area

Applied sport and exercise physiology

Abstract

International Journal of Exercise Science 15(6): 455-472, 2022. The effect of a pre-workout supplement on anaerobic power output and muscular fatigue was examined. 18 participants took part in this double-blinded crossover study, reporting for testing on 3 occasions. Participants completed a 6x6 second repeated sprint test, with 20s recovery between sprints. Anaerobic power output was recorded as the highest power achieved during sprint test. Muscular fatigue was reported as a fatigue index across the six sprints ((maximum power – minimum power) ÷ total sprint time). During a baseline visit, participants consumed 250ml of water 30 minutes prior to testing, whilst in subsequent visits a taste-matched placebo (250ml water mixed with sugar-free juice) or a pre-workout supplement (250ml water mixed with one serving of ‘THE PRE’ myprotein.com). Anaerobic power output increased following pre-workout ingestion (pre-workout supplement, 885.8 ± 216.9W; Placebo, 853.6 ± 206.5W; Baseline, 839.3 ± 192.6W). Baseline vs pre-workout supplement (p = 0.01, g = 0.30); Placebo vs pre-workout supplement (p = 0.01, g = 0.20); Baseline vs Placebo (p = 0.59 g = 0.09). Muscular fatigue was reduced following pre-workout ingestion (Baseline, 4.92 ± 1.83W.s; Placebo, 4.39 ± 1.93W.s; pre-workout supplement, 3.31 ± 1.34W.s). Baseline vs pre-workout supplement (p = < 0.01 g = 0.98); Placebo vs pre-workout supplement (p = 0.01, g = 0.63); Baseline vs Placebo (p = 0.20, g = 0.28). Acute ingestion of a pre-workout supplement significantly improves anaerobic power output and attenuates muscular fatigue during repeated sprint cycling.

COinS