•  
  •  
 

Abstract

International Journal of Exercise Science 16(4): 12-22, 2023. Hinge exercises are critical to building a balanced resistance training program in concert with ‘knee-dominant’ (e.g., squat, lunge) exercises. Biomechanical differences between various straight-legged hinge (SLH) exercises may alter muscle activation. For example, a Romanian deadlift (RDL) is a closed-chain SLH, while a reverse hyperextension (RH) is open-chain. Likewise, the RDL offers resistance via gravity while the cable pull-through (CP) offers redirected-resistance through a pulley. A deeper understanding of the potential impact of these biomechanical differences between these exercises may improve their application to specific goals. Participants completed repetition-maximum (RM) testing on the RDL, RH, and CP. On a follow-up visit, surface electromyography of the longissimus, multifidus, gluteus maximus, semitendinosus, and biceps femoris, muscles that contribute to lumbar/hip extension, was recorded. After a warm-up, participants completed maximal voluntary isometric contractions (MVICs) in each muscle. They then completed five repetitions of the RDL, RH, and CP at 50% of estimated one RM. Testing order was randomized. A one-way, repeated-measures ANOVA test was used in each muscle to compare activation (%MVIC) across the three exercises. Shifting from a gravity- (RDL) to a redirected-resistance (CP) SLH significantly decreased activation in the longissimus (-11.0%), multifidus (-14.1%), biceps femoris (-13.1%), and semitendinosus (-6.8%). Alternately, changing from a closed- (RDL) to an open-chain (RH) SLH significantly increased activation in the gluteus maximus (+19.5%), biceps femoris (+27.9%), and semitendinosus (+18.2). Alterations in the execution of a SLH can change muscle activation in lumbar/hip extensors.

Share

COinS