Publication Date

8-2012

Advisor(s) - Committee Chair

Dr. Kenneth Crawford (Director), Dr. Claire Rinehart, Dr. Sigrid Jacobshagen

Degree Program

Department of Biology

Degree Type

Master of Science

Abstract

The purpose of this study was to determine whether Endothelin-1 (ET-1) induced cellular responses in bovine corneal endothelial cells (BCECs) involves MAPK pathway by phosphorylating ERK1/2 protein kinase and to find out the phosphorylation patterns of ERK1/2 in confluent and sub-confluent cells. BCECs were isolated from bovine corneas and cultured in medium supplemented with 10% serum. Confluent (contact inhibited) and sub-confluent (actively growing cells) serum starved cells grown in T-75 flasks were treated with 10nM Endothelin-1. The control cells were left untreated. Total cellular protein was isolated using RIPA buffer and quantified according to the Peterson modification of the Lowry method. The level of expression of phosphorylated ERK1/2 (pp44, pp42) proteins relative to overall ERK1/2 (p44, p42) was determined by western blotting technique. Densitometry analysis of immunoblots revealed differential phosphorylation patterns in confluent and sub-confluent cultures. The pERK1/2 levels were significantly increased at 15 min and 24 hrs after post incubation with ET-1, whereas following the initial rise levels declined to 6hrs of incubation with ET-1 in confluent cultures. In sub-confluent cultures pERK1/2 levels increased gradually to 6hrs of incubation with ET-1, returning to pre-incubation levels at 24hrs. In conclusion, ET-1 treatment was shown to induce phosphorylation of ERK1/2 in BCEC. ET-1 treatment in confluent and sub confluent BCEC exhibited time dependent phosphorylation of ERK1/2. ET-1 treatment affected the phosphorylation pattern distinctively in confluent and sub-confluent BCEC. These observations led to the conclusion that ET-1 induced cellular events in BCEC may involve the MAPK cascade and that these ET-1 induced MAPK cascades may exhibit a negative feedback mechanism, suggested by a distinctive oscillations in pERK 1/2 levels. The contrasting effects of ET-1 in confluent and subconfluent cells may suggest a density dependent phosphatase activity.

Disciplines

Cell Biology

Included in

Cell Biology Commons

Share

COinS