Publication Date

8-2013

Advisor(s) - Committee Chair

John Khouryieh (Director), Kevin Williams, Darwin Dahl

Degree Program

Department of Chemistry

Degree Type

Master of Science

Abstract

Scientific evidence shows that dietary intake of the omega-3 polyunsaturated fatty acids is beneficial to human health. Fish oil is a rich source of omega-3 fatty acids. However, fish oil with high levels of omega-3 PUFA is very susceptible to oxidative deterioration during storage. The objective of this study was to investigate the effect of xanthan gum (XG)-locust bean gum (LBG) mixtures on the physicochemical properties of whey protein isolate (WPI) stabilized oil-in-water (O/W) emulsions containing 20% v/v menhaden oil. The O/W emulsions containing XG/LBG mixtures were compared to emulsions with either XG or LBG alone. The emulsions were prepared using a sonicator by first mixing menhaden oil into the WPI solution and then either XG, LBG or XG/LBG mixtures were added. WPI solution (2 wt%) and gum solutions (0.0,0.05, 0.1, 0.15, 0.2 and 0.5 wt%) were prepared separately by dissolving measured quantities of WPI in distilled water. XG and LBG gums were blended in a synergistic ratios of 50:50 for the mixture. The emulsions were evaluated for apparent viscosity, microstructure, creaming stability and oxidative stability. Addition of 0.15, 0.2 and 0.5 wt% XG/LBG mixtures greatly decreased the creaming of the emulsion. The emulsion with 0.15, 0.2 and 0.5 wt% XG/LBG mixtures showed no visible serum separation during 15 d of storage. The apparent viscosity of the emulsions containing XG/LBG mixtures was significantly higher (p < 0.05) than the emulsions containing either XG or LBG alone. The viscosity was sharply enhanced at higher concentrations of XG/LBG mixtures. Microstructure images showed depletion flocculation for LBG (0.05-0.5 wt%), XG (0.05- 0.2 wt%) and XG/LBG mixtures (0.05 and 0.1 wt%) emulsions. Flocculation was decreased with the increased biopolymer concentration in the emulsion. The decrease in flocculation was much pronounced for the emulsion containing XG/LBG mixtures. The rate of lipid oxidation for 8 week storage was significantly (p < 0.05) lower in emulsions containing XG/LBG mixtures than in emulsions containing either of the biopolymer alone. The results suggested that the addition of XG/LBG mixtures greatly enhanced the creaming and oxidative stability of the WPI-stabilized menhaden O/W emulsion as compared to either XG or LBG alone.

Disciplines

Biochemistry | Chemistry | Food Chemistry | Organic Chemistry

Share

COinS