Publication Date
5-2015
Advisor(s) - Committee Chair
Muhammad Jahan (Director), Greg Arbuckle, Mark Doggett
Degree Program
Department of Architectural and Manufacturing Sciences
Degree Type
Master of Science
Abstract
Electrical Discharge Machining (EDM) is a non-traditional machining process that uses hundreds of thousands of minute electrical sparks per second to machine any electrically conductive material, no matter the hardness or how delicate it is. EDM allows a much greater range of design possibilities, unconstrained from the traditional machining processes, in which material is removed mechanically by either rotating the cutting tool or the work piece. Shapes that were impossible to machine by any other method, such as deep, precision, square holes and slots with sharp inside corners, are readily produced. It provides accurate geometries in high- aspect ratio holes and slots, blind undercuts, small holes adjacent to deep sidewalls, and complex cuts in thin, fragile parts. Micro-EDM is a growing form of manufacturing and will continue to expand within various production fields. Micro-EDM is especially attractive for the applications where the cutting time is minimal, but precision and accuracy are maximized. Micro- EDM is a non-traditional cutting process, which consistently produces ultra-precise holes with fine surface finishes and better roundness, while holding extremely close diameter tolerances. The process could be an excellent problem-solving tool for configurations that are difficult or impossible to produce using conventional machining processes. This study presents a comparative experimental investigation on the micro-EDM machinability of difficult-to-cut Ti-6Al-4V and soft brass materials. As both materials are electrically conductive, they were machinable using the micro-EDM process irrespective of their hardness. The machining performance of the two materials was evaluated based on the quality of the micro-features produced by the micro-EDM process. Both blind and through micro-holes and micro-slots were machined on brass and Ti-6Al-4V materials. The quality of micro-features was assessed based on the shape accuracy, surface finish and profile accuracy of the features. Finally, the arrays of micro-features were machined on both materials to compare the mass production capability of micro-EDM process on those materials.
Disciplines
Aerospace Engineering | Chemical Engineering | Engineering Education | Structures and Materials
Recommended Citation
Moses, Mychal-Drew, "A Study on the Micro Electro-Discharge Machining of Aerospace Materials" (2015). Masters Theses & Specialist Projects. Paper 1448.
https://digitalcommons.wku.edu/theses/1448
Included in
Chemical Engineering Commons, Engineering Education Commons, Structures and Materials Commons