Publication Date

Fall 2015

Advisor(s) - Committee Chair

Dr. Cathleen Webb (Director), Dr. Rajalingham Dakshinamurthy, and Dr. Yan Cao

Degree Program

Department of Chemistry

Degree Type

Master of Science

Abstract

Recently, the rate of corrosion of copper water pipes in Bowling Green, Kentucky has unexpectedly accelerated. The specific reasons for this are unknown. Our aim is to elucidate the factors enhancing the corrosion and help understand the primary mechanisms of action. This will help in combating and reducing future corrosion incidents leading to pipe failure, thus reducing losses experienced when these pipes are replaced. This study seeks to explore the characteristics and factors involved. The scanning electron microscopy was used to obtain elemental composition, and images of both inside and outside of the corroded pipes. Strikingly, corrosion primarily occurred on the outside of the pipes, not inside. X-ray crystallography also was used to examine the pipes. The results showed that the interior of the pipes mostly consisted of SiO2, CuO2, CaCO3 while the exterior consisted of Cu2(OH)2CO3, Fe2Al2O4, CaCO3, SiO2 and Cu2O. There was no clear single factor for the corrosion observed. For further studies, we plan to long temporal experiments. The results from the study will help in minimizing the costs to the city in Bowling Green, Kentucky.

Disciplines

Chemistry | Materials Chemistry

Share

COinS