Publication Date
Fall 2019
Advisor(s) - Committee Chair
Dr. Ferhan Atici (Director), Dr. Mark Robinson, and Dr. John Spraker
Degree Program
Department of Mathematics
Degree Type
Master of Science
Abstract
The main purpose of this thesis to examine the controllability and observability of the linear discrete fractional systems. First we introduce the problem and continue with the review of some basic definitions and concepts of fractional calculus which are widely used to develop the theory of this subject. In Chapter 3, we give the unique solution of the fractional difference equation involving the Riemann-Liouville operator of real order between zero and one. Additionally we study the sequential fractional difference equations and describe the way to obtain the state-space repre- sentation of the sequential fractional difference equations. In Chapter 4, we study the controllability and observability of time-invariant linear nabla fractional systems.We investigate the time-variant case in Chapter 5 and we define the state transition matrix in fractional calculus. In the last chapter, the results are summarized and directions for future work are stated.
Disciplines
Discrete Mathematics and Combinatorics | Dynamical Systems | Mathematics | Other Mathematics
Recommended Citation
Zhoroev, Tilekbek, "Controllability and Observability of Linear Nabla Discrete Fractional Systems" (2019). Masters Theses & Specialist Projects. Paper 3156.
https://digitalcommons.wku.edu/theses/3156
Included in
Discrete Mathematics and Combinatorics Commons, Dynamical Systems Commons, Other Mathematics Commons