Publication Date
Spring 2021
Advisor(s) - Committee Chair
Dr. Ahmet Ozkan Ozer (Director), Dr. Mikhail Khenner, Dr. Mark Robinson, Dr. Richard Schugart
Degree Program
Department of Mathematics
Degree Type
Master of Science
Abstract
*see note below
In control theory, the time it takes to receive a signal after it is sent is referred to as the observation time. For certain types of materials, the observation time to receive a wave signal differs depending on a variety of factors, such as material density, flexibility, speed of the wave propagation, etc. Suppose we have a strongly coupled system of two wave equations describing the longitudinal vibrations on a piezoelectric beam of length L. These two wave equations have non-identical wave propagation speeds c1 and c2. First, we prove the exact observability inequality with the optimal observation time satisfying T > T1 = 2L min (c1,c2) by adopting two different techniques: the multipliers method (non-spectral) and non-harmonic Fourier series (spectral). Next, we discretize the spacial variable for the system via central Finite Differences. We find that for this particular discretization, the minimal observability time approaches infinity as the discretization parameter h goes to zero, and therefore, the discretized equations lack uniform observability unlike the original equations. This is simply due to the blind use of Finite Differences which generates spurious high frequency vibrational modes. To resolve this issue, a filtering technique, known as the direct Fourier filtering, is adopted, and an observability inequality is proved with a (sub-optimal) observation time T > T1 > T2 as the discretization parameter tends to zero. These results show that filtered finite differences can be safely applied to the system of piezoelectric beam equations in designing stabilizing controllers.
*because of formatting limitations some formulas in this field may not appear accurately. Please see the actual thesis for definitive versions.
Disciplines
Applied Mathematics | Control Theory | Numerical Analysis and Computation | Partial Differential Equations
Recommended Citation
Horner, Wilson Dennis, "Analysis of Boundary Observability of Strongly Coupled One-dimensional Wave Equations with Mixed Boundary Conditions" (2021). Masters Theses & Specialist Projects. Paper 3505.
https://digitalcommons.wku.edu/theses/3505
Included in
Control Theory Commons, Numerical Analysis and Computation Commons, Partial Differential Equations Commons